首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  2019年   1篇
  2012年   3篇
  2011年   6篇
  2009年   3篇
  2006年   1篇
  2001年   1篇
  1993年   1篇
  1991年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
淀粉发酵法制取甘油   总被引:1,自引:0,他引:1  
随首市场对甘油(丙三醇)的需求量不断增加,且皂化甘油产量又不断下降,为缓解供需矛盾,开发甘油新来源,以淀粉为原料经酶法液化、糖化后,以亚硫酸盐诱导进行甘油发酵,再经处理分离、精制,能获得较好的甘油产品。本文介绍淀粉发酵法制取甘油的工艺及化学原理。  相似文献   
2.
Biomass has been recognised as a promising resource for future energy and fuels. The biomass, originated from plants, is renewable and application of its derived energy and fuels is close to carbon-neutral by considering that the growing plants absorb CO2 for photosynthesis. However, the complex physical structure and chemical composition of the biomass significantly hinder its conversion to gaseous and liquid fuels.This paper reviews recent advances in biomass thermochemical conversion technologies for energy, liquid fuels and chemicals. Combustion process produces heat or heat and power from the biomass through oxidation reactions; however, this is a mature technology and has been successfully applied in industry. Therefore, this review will focus on the remaining three thermochemical processes, namely biomass pyrolysis, biomass thermal liquefaction and biomass gasification. For biomass pyrolysis, biomass pretreatment and application of catalysts can simplify the bio-oil composition and retain high yield. In biomass liquefaction, application of appropriate solvents and catalysts improves the liquid product quality and yield. Gaseous product from biomass gasification is relatively simple and can be further processed for useful products. Dual fluidised bed (DFB) gasification technology using steam as gasification agent provides an opportunity for achieving high hydrogen content and CO2 capture with application of appropriate catalytic bed materials. In addition, multi-staged gasification technology, and integrated biomass pyrolysis and gasification as well as gasification for poly-generation have attracted increasing attention.  相似文献   
3.
Long J  Guo B  Teng J  Yu Y  Wang L  Li X 《Bioresource technology》2011,102(21):10114-10123
Liquefaction is a process for the production of biofuel or value-added biochemicals from non-food biomass. SO3H-, COOH-functionalized and HSO4-paired imidazolium ionic liquids were shown to be efficient catalysts for bagasse liquefaction in hot compressed water. Using SO3H-functionalized ionic liquid, 96.1% of bagasse was liquefied and 50.6% was selectively converted to low-boiling biochemicals at 543 K. The degree of liquefaction and selectivity for low-boiling products increased and the average molecular weight of the tetrahydrofuran soluble products decreased with increasing acidic strength of ionic liquids. Analysis of products and comparative characterization of raw materials and residues suggested that both catalytic liquefaction and hydrolysis processes contribute to the high conversion of bagasse. A possible liquefaction mechanism based on the generation of 3-cyclohexyl-1-propanol, one of the main products, is proposed.  相似文献   
4.
A range of model biochemical components, microalgae and cyanobacteria with different biochemical contents have been liquefied under hydrothermal conditions at 350 °C, ∼200 bar in water, 1 M Na2CO3 and 1 M formic acid. The model compounds include albumin and a soya protein, starch and glucose, the triglyceride from sunflower oil and two amino acids. Microalgae include Chlorella vulgaris,Nannochloropsis occulata and Porphyridium cruentum and the cyanobacteria Spirulina. The yields and product distribution obtained for each model compound have been used to predict the behaviour of microalgae with different biochemical composition and have been validated using microalgae and cyanobacteria. Broad agreement is reached between predictive yields and actual yields for the microalgae based on their biochemical composition. The yields of bio-crude are 5-25 wt.% higher than the lipid content of the algae depending upon biochemical composition. The yields of bio-crude follow the trend lipids > proteins > carbohydrates.  相似文献   
5.
The objective of the present work was to add value to three different qualities of grain sorghum namely normal healthy, germinated, and blackened through production of glucose, and to intensify glucose production (yield) by means of ultrasound treatment. Liquefaction (using Bacillus licheniformis α-amylase) and saccharification (using amyloglucosidase) processes were optimized with use of normal sorghum flour as a starting material for the production of glucose. The effect of ultrasound treatment on the sorghum slurry prior to liquefaction was studied on the processes of liquefaction and saccharification under optimized conditions. Due to ultrasound treatment, liquefact DE increased by 10-25% depending upon sonication time and the intensity. Ultrasound treatment of 1 min at 100% amplitude was found to decrease the average particle size of the slurry from 302 μm to 115 μm, which resulted in an increased percentage of saccharification by about 8%. The reason for the increase in the percentage of saccharification was attributed to the availability of additional starch for hydrolysis due to ultrasound-assisted disruption of the protein matrix (surrounding starch granules) and the amylose-lipid complex. Integration of ultrasound treatment in the state of art of the production of glucose from dry-milled sorghum and its possible subsequent use in the bioethanol production may improve the overall economics of the process.  相似文献   
6.
Microwave driven wood liquefaction with glycols   总被引:1,自引:0,他引:1  
Wood liquefaction with glycols using p-toluenesulfonic acid as the catalyst was carried out under microwave heating. With rapid heating and temperatures in the 190–210 °C range complete liquefaction was achieved in 7 min. Liquefaction efficiency was dependent on the choice of glycol. Simple glycols such as ethylene glycol and propylene glycol were more effective than higher analogues. The use of glycerol in mixtures with glycols showed a synergistic effect. Size exclusion chromatography was used to follow the gradual emergence of liquefaction products in solution as well as the recondensation products that start forming early in the reaction and precipitate from solution when molar masses of approx. 1 × 104 g/mol are reached.  相似文献   
7.
Yuan X  Huang H  Zeng G  Li H  Wang J  Zhou C  Zhu H  Pei X  Liu Z  Liu Z 《Bioresource technology》2011,102(5):4104-4110
The risk (including bioavailability and eco-toxicity) of heavy metals (Pb, Zn, Cu, Cd, Cr and Ni) in liquefaction residues (LR) of sewage sludge (SS) was estimated, according to both the speciation of heavy metals and the local environmental characteristics. The amount of organic matters in LR was lower than that in SS, resulting in a smaller calorific value, while the total content of heavy metals in LR nearly doubled. High residual rates of heavy metals (about 80%) indicated that the heavy metals in SS were concentrated into LR after liquefaction. The comparisons of sequential extraction results between SS and LR showed that after liquefaction, the mobile and easily available heavy metal fractions (acid soluble/exchangeable and reducible fractions) were mainly transformed into the relatively stable heavy metal fractions (oxidizable and residual fractions). The bioavailability and eco-toxicity of heavy metals in LR were relieved, though the total concentrations of heavy metals increased.  相似文献   
8.
Huang H  Yuan X  Zeng G  Zhu H  Li H  Liu Z  Jiang H  Leng L  Bi W 《Bioresource technology》2011,102(22):10346-10351
Liquefaction residues (LR) are the main by-products of sewage sludge (SS) liquefaction. This study quantitatively evaluates the potential ecological risk and pollution degrees of heavy metals (Pb, Zn, Cu, Cd, Cr and Ni) in LR versus SS. The leaching rates (R1) of heavy metals in LR were much lower than those in SS, revealing that the mobility/leachability of heavy metals was well suppressed after liquefaction. Geo-accumulation index (Igeo) indicated that the liquefaction process significantly weakened the contamination degrees of heavy metals. Potential ecological risk index (RI) demonstrated that overall risks caused by heavy metals were obviously lowered from 1093.56 (very high risk) in SS to 4.72 and 1.51 (low risk) in LR1 and LR2, respectively. According to the risk assessment code (RAC), each tested heavy metal had no or low risk to the environments after liquefaction. In a word, the pollution hazards of heavy metals in LR were markedly mitigated.  相似文献   
9.
The brown macro-alga Laminaria saccharina was converted into bio-crude by hydrothermal liquefaction in a batch reactor. The influence of reactor loading, residence time, temperature and catalyst (KOH) loading was assessed. A maximum bio-crude yield of 19.3 wt% was obtained with a 1:10 biomass:water ratio at 350 °C and a residence time of 15 min without the presence of the catalyst. The bio-crude had an HHV of 36.5 MJ/kg and is similar in nature to a heavy crude oil or bitumen. The solid residue has high ash content and contains a large proportion of calcium and magnesium. The aqueous phase is rich in sugars and ammonium and contains a large proportion of potassium and sodium.  相似文献   
10.
Ultrasonically assisted liquefaction of lignocellulosic materials   总被引:1,自引:0,他引:1  
In our research, we have utilized high energy ultrasound for the liquefaction of different lignocellulosic materials, wood wastes in particular. We developed a highly efficient way of transforming this biomass waste into valuable chemicals. It was found, that the reaction yield in all experiments was high and that the reaction times were shortened up to nine times when using the ultrasound process with smaller residual particles and with no influence on the hydroxyl number of the final products. The use of the ultrasound process inhibits the formation of the large molecular structures during the liquefaction from the degradation products, by keeping the reactive segments apart and due to such a short reaction time being used. The short reaction time and subsequent low energy consumption for the liquefaction reaction leads to the creation of the new method for the transformation of the wood waste materials into valuable chemicals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号