首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   4篇
  2023年   1篇
  2021年   1篇
  2019年   6篇
  2018年   5篇
  2017年   5篇
  2016年   1篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
排序方式: 共有33条查询结果,搜索用时 296 毫秒
1.
Deficits in satiation signaling during obesogenic feeding have been proposed to play a role in hyperphagia and weight gain in animals prone to become obese. However, whether this impaired signaling is due to high fat (HF) feeding or to their obese phenotype is still unknown. Therefore, in the current study, we examined the effects of CCK-8 (0.5, 1.0, 2.0, and 4.0 μg/kg) on suppression of food intake of HF-fed obese prone (OP) and resistant (OR) rats. Additionally, we determined the role of endogenous CCK in lipid-induced satiation by measuring plasma CCK levels following a lipid gavage, and tested the effect of pretreatment with devazepide, a CCK-1R antagonist on intragastric lipid-induced satiation. Finally, we examined CCK-1R mRNA levels in the nodose ganglia. We show that OP rats have reduced feeding responses to the low doses of exogenous CCK-8 compared to OR rats. Furthermore, OP rats exhibit deficits in endogenous CCK signaling, as pretreatment with devazepide failed to abolish the reduction in food intake following lipid gavage. These effects were associated with reduced plasma CCK after intragastric lipid in OP but not OR rats. Furthermore, HF feeding resulted in downregulation of CCK-1Rs in the nodose ganglia of OP rats. Collectively, these results demonstrate that HF feeding leads to impairments in lipid-induced CCK satiation signaling in obese-prone rats, potentially contributing to hyperphagia and weight gain.  相似文献   
2.
目的:研究碘代甲状腺氨酸脱碘酶(DIO)基因多态性与有氧耐力的相关性,寻找与有氧耐力表型相关的分子标记。方法:应用基质辅助激光解吸电离飞行时间质谱检测技术,对123名中国北方汉族优秀长跑运动员(EEA)与127名中国北方汉族普通大学生(CG)DIO1基因C785T位点及DIO2基因的Thr92Ala和Gly3Asp位点进行解析并分析比较,其中优秀运动员又根据运动等级和运动项目分为国际健将与健将组(43vs80),及5/10km和马拉松组(92vs31)。结果:在DIO1的C785T位点及DIO2的Thr92Ala位点,各组间基因型和等位基因频率均无显著性差异(P>0.05);在DIO2的Gly3Asp位点,三种基因型在CG组与国际健将组、CG组与马拉松组间的分布均差异显著(P<0.05),其中TT基因型在CG组中不表达,仅存在于EEA组,但频率很低。DIO2的Thr92Ala及Gly3Asp位点处于强连锁不平衡,CT单体型在男CG组与女CG组、男CG组与男EEA组间分布均差异显著(P<0.05),在男CG组与男健将组、男马拉松组间的分布也均差异显著(P<0.05),TC单体型则在女CG组与女国际健将组、女5000m和10000m组间的分布差异显著(P<0.05)。结论:DIO2基因Thr92Ala及Gly3Asp位点的CT单体型分布具有性别差异,是男子EEA有氧耐力素质的分子标记,可用于男子长跑健将级运动员及马拉松运动员的分子选材,TC单体型则是女子长跑国际健将运动员和5000m、10000m运动员有氧耐力素质的分子标记。  相似文献   
3.
肥胖大鼠模型的建立及其脂代谢相关分子机制研究   总被引:2,自引:0,他引:2  
目的建立饮食诱导的肥胖(diet-induced obesity,DIO)大鼠模型并初步探讨其发病的分子机制。方法用脂肪含量30%的高脂饲料饲喂雄性SD大鼠25周,观察大鼠体重、Lee’s指数、肝组织病理改变,检测大鼠空腹血糖及空腹血清胰岛素水平,并通过real-time PCR,检测成模大鼠肝脏中乙酰辅酶A羧化酶(ACC)、脂肪酸合酶(FAS)、激素敏感酯酶(HSL)以及固醇调节元件结合蛋白-1c(SREBP-1c)的表达变化。结果高脂饲料饲喂6周后,DIO组大鼠体重、Lee’s指数均显著增加;25周后肝脏脂肪异常蓄积,出现中重度脂肪肝,空腹血糖及胰岛素水平显著升高,出现明显的胰岛素抵抗。肝脏中ACC、FAS和HSL表达显著增加,SREBP-1c表达水平达到正常组的2.56倍,两组间差异极其显著。结论成功建立了DIO大鼠模型,通过检测脂代谢相关基因的表达水平,初步阐释了营养性肥胖的发生与脂代谢变化之间的关系,SREBP-1c,ACC,FAS和HSL参与了DIO的形成,从而初步揭示了脂代谢变化与营养性肥胖的发生的关系。  相似文献   
4.
Neuropeptide Y2 receptor (Y2R) agonism is an important anorectic signal and a target of antiobesity drug discovery. Recently, we synthesized a short-length Y2R agonist, PYY-1119 (4-imidazolecarbonyl-[d-Hyp24,Iva25,Pya(4)26,Cha27,36,γMeLeu28,Lys30,Aib31]PYY(23–36), 1) as an antiobesity drug candidate. Compound 1 induced marked body weight loss in diet-induced obese (DIO) mice; however, 1 also induced severe vomiting in dogs at a lower dose than the minimum effective dose administered to DIO mice. The rapid absorption of 1 after subcutaneous administration caused the severe vomiting. Polyethylene glycol (PEG)- and alkyl-modified derivatives of 1 were synthesized to develop Y2R agonists with improved pharmacokinetic profiles, i.e., lower maximum plasma concentration (Cmax) and longer time at maximum concentration (Tmax). Compounds 5 and 10, modified with 20?kDa PEG at the N-terminus and eicosanedioic acid at the Lys30 side chain of 1, respectively, showed high Y2R binding affinity and induced significant body weight reduction upon once-daily administration to DIO mice. Compounds 5 and 10, with their relatively low Cmax and long Tmax, partially attenuated emesis in dogs compared with 1. These results indicate that optimization of pharmacokinetic properties of Y2R agonists is an effective strategy to alleviate emesis induced by Y2R agonism.  相似文献   
5.

Background

Methylmercury (CH3Hg+) toxicity is characterized by challenging conundrums: 1) “selenium (Se)-protective” effects, 2) undefined biochemical mechanism/s of toxicity, 3) brain-specific oxidative damage, 4) fetal vulnerability, and 5) its latency effect. The “protective effects of Se” against CH3Hg+ toxicity were first recognized >50?years ago, but awareness of Se's vital functions in the brain has transformed understanding of CH3Hg+ biochemical mechanisms. Mercury's affinity for Se is ~1 million times greater than its affinity for sulfur, revealing it as the primary target of CH3Hg+ toxicity.

Scope of review

This focused review examined research literature regarding distinctive characteristics of CH3Hg+ toxicity to identify Se-dependent aspects of its biochemical mechanisms and effects.

Conclusions

Research indicates that CH3Hg+ irreversibly inhibits the selenoenzymes that normally prevent/reverse oxidative damage in the brain. Unless supplemental Se is provided, consequences increase as CH3Hg+ approaches/exceeds equimolar stoichiometries with Se, thus forming HgSe and inducing a conditioned Se deficiency. As the biochemical target of CH3Hg+ toxicity, Se-physiology provides perspectives on the brain specificity of its oxidative damage, accentuated fetal vulnerability, and latency. This review reconsiders the concept that Se is a “tonic” that protects against CH3Hg+ toxicity and recognizes Se's role as Hg's molecular “target”. As the most potent intracellular nucleophile, the selenoenzyme inhibition paradigm has broad implications in toxicology, including resolution of conundrums of CH3Hg+ toxicity.

General significance

Mercury-dependent sequestration of selenium and the irreversible inhibition of selenoenzymes, especially those required to prevent and reverse oxidative damage in the brain, are primarily responsible for the characteristic effects of mercury toxicity.  相似文献   
6.
The gastrointestinal peptide, peptide YY3–36 (PYY3–36) and its shorter peptide analogues have been reported to reduce appetite by activating the neuropeptide Y2 receptor (Y2R), which is associated with obesity and other metabolic diseases. A 14-amino acid PYY analogue, Ac-[d-Pro24,Cha27,28,36,Aib31]PYY(23–36) (3), showed high binding affinity and agonist activity for the Y2R, similar to that of PYY3–36, but had weak anorectic activity upon continuous administration in lean mice. Three amino acid substitutions [Pya(4)26, Aib28, Lys30], which contributed to the decreased hydrophobicity of 3, efficiently increased its anorectic activity. The compound containing these three amino acids, Ac-[d-Pro24,Pya(4)26,Cha27,36,Aib28,31,Lys30]PYY(23–36) (22), exerted more potent and durable food intake suppression than that by PYY3–36 in lean mice, as well as excellent Y2R agonist activity (EC50: 0.20 nM) and good subcutaneous bioavailability (66.6%). The 11-day continuous administration of 22 at 1 mg/kg/day successfully produced antiobese and antidiabetic effects, with more than 20% body weight loss in obese and Type 2 diabetes ob/ob model mice.  相似文献   
7.
Neuromedin U (NMU) mediates various physiological functions via NMUR1 and NMUR2 receptors. NMUR2 has been considered a promising treatment option for diabetes and obesity. Although NMU-8, a shorter peptide, has potent agonist activity for both receptors, it is metabolically unstable. Therefore, NMU-8 analogs modified with long-chain alkyl moieties via a linker were synthesized. An octadecanoyl analog (17) with amino acid substitutions [αMePhe19, Nle21, and Arg(Me)24] and a linker [Tra-γGlu-PEG(2)] dramatically increased NMUR2 selectivity, with retention of high agonist activity. Subcutaneous administration of 17 induced anorectic activity in C57BL/6J mice. Owing to its high metabolic stability, 17 would be useful in clarifying the physiological role and therapeutic application of NMU.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号