首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  国内免费   1篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2012年   3篇
  2011年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Journal of Plant Growth Regulation - Salinity stress hampers rice growth and development due to its osmotic, ionic, and hormonal (ethylene) stresses. High ethylene production affects inferior and...  相似文献   
2.
Six Limnothrix strains, isolated for the first time from a shallow eutrophic lake in central China, were taxonomically and phylogenetically evaluated by investigating their polyphasic characteristics, including morphological features, cellular ultrastructures, and 16S rRNA gene sequences. All the six strains were morphologically similar, and their trichomes were in average 1.7 μm wide and cells 4.0 μm long, and having small gas vesicles within cells, and therefore identified as Limnothrix planctonica (Woloszynska) Meffert. Cellular ultrastructures of them showed that peripheral thylakoids with 3–5 parallel layers were parietally distributed in the cells. The phylogenetic results based on the 16S rRNA gene sequences showed that all the Limnothrix strains, including the six in this study and those from the Genbank, formed two distinct clusters. The similarity in 16S rDNA sequences between these two clusters was lower than 90%, indicating that these Limnothrix strains belong to different genera. This is the first report on the morphology and phylogeny of L. planctonica strains, providing the new information on taxonomy of the genus Limnothrix.  相似文献   
3.
Fei J  Li Y  Zhu X  Luo X 《PloS one》2012,7(3):e32834
MicroRNAs (miRNAs) are a class of short RNAs that regulate gene expression through either translational repression or mRNA cleavage. miRNA-181a (miR-181a), one of the many miRNAs conserved among vertebrates, is differentially expressed in a variety of leukemia. However, its function in leukemia, particularly chronic myelogenous leukemia (CML), is poorly understood. Here we have reported the identification of miR-181a targets by combining TargetScan software prediction and expression profiling through overexpression of miR-181a mimic in leukemic K562 cells. Four overlapping genes were found to be the likely targets of miR-181a. Among the four genes, RalA is a downstream molecule of bcr-abl fusion protein in ras signaling pathway. However, its role in CML remains elusive. Luciferase reporter and Western blot assays confirmed that RalA is a direct target of miR-181a. overexpression of miR-181a effectively suppresses cell growth and induces G2-phase arrest and apoptosis partially by targeting RalA in leukemic K562 cells. Using the KEGG database combined with recent publications, downstream signaling pathway of RalA was graphed by cytoscape software. Therefore, our study is the first to report that RalA is directly regulated by miR-181a and plays an important role in CML. The approach of computational prediction combined with expression profiling might be valuable for the identification of miRNA targets in animal.  相似文献   
4.
Water and nitrogen (N) are two of the most important abiotic factors limiting rice yield. However, a little information is available on why a moderate water and N interaction significantly increase rice biomass, from the point of view of photosynthetic physiology. A pot experiment with three water regimes [continued flood (CF), alternate wetting and moderate drying (WMD), and alternate wetting and severe drying (WSD)] and four N application levels (no nitrogen, N0; 90 kg hm?2, N1; 180 kg hm?2, N2; 270 kg hm?2, N3) was carried out to investigate this problem. Results demonstrated that WSD significantly inhibited rice height, leaf area, chlorophyll content, photosynthesis, and yield at the four different N levels, as compared to that with CF and WMD. However, WMD substantially alleviated these reductions, and their values were not significantly different from those of CF. Contents of leaf soluble protein and total chlorophyll in WMD were increased compared to the WSD, and this mitigating effect was beneficial to the increase of rice photosynthesis and yield development. Photosynthesis in rice leaf was significantly affected by water status but not N level. Analysis of variance demonstrated a significant effect of water on spikelet number, which indicates that the reduction of spikelet number under water stress may be the major reason for its low yield. Therefore, we concluded that WMD could be considered as an effective water management regime to obtain high yield in rice production, and its strengthened drought tolerance was closely associated with the higher dry matter and in the physiological characteristics including an increase in spikelet number, chlorophyll and soluble protein contents, and photosynthetic rate.  相似文献   
5.
To investigate whether mixed-N (NO3 ??+?NH4 +) nutrition can enhance rice growth under water-deficit condition, a hydroponic experiment in which rice plants were supplied with different N forms (NO3 ?, NH4 + and mixed-N) was conducted, and the intrinsic mechanisms involved in photosynthesis, root-shoot carbon partitioning, and hormone signalling were investigated. Water stress was found to decrease rice biomass, leaf area, chlorophyll and Rubisco contents. However, mixed-N nutrition substantially alleviated these inhibitions compared with NO3 ? nutrition alone. Mixed-N nutrition also maintained a higher electron transport rate, actual photochemical efficiency of PSII, and non-photochemical quenching, causing higher photosynthesis and photochemical efficiency. Water stress up-regulated leaf sucrose-phosphate synthase (SPS), but down-regulated acid invertase (InvA). However, leaf InvA and root sucrose synthase in the cleavage direction (SSc) in NO3 ? nutrition was higher than that in mixed-N nutrition. Water stress decreased indole acetic acid (IAA) content in leaves and cytokinins content in roots, but their contents in mixed-N nutrition were higher than those in NO3 ? nutrition. In mixed-N nutrition, the up-regulation of SPS and IAA in leaves and the reduction of sucrose metabolism (SSc and InvA) in roots jointly resulted in the accumulation of sucrose in leaves and the inhibition of its transportation to roots, finally reducing the root:shoot ratio (R/S). The reduced R/S provides more photosynthates for shoots and increases the utilisation efficiency, thereby strengthening the water-deficit tolerance of plants. We concluded that the strengthened water-deficit tolerance in mixed-N-supplied rice was closely associated with higher accumulation of dry matter mainly via improvement of photosynthesis and photochemical efficiency, hormone balance, and coupling with root-shoot carbon partitioning.  相似文献   
6.
7.
水分管理调控水稻氮素利用研究进展   总被引:3,自引:0,他引:3  
水、氮是调控水稻生长发育的两个重要环境因子。通过"以水调氧"增加根际溶氧量(如干湿交替、好氧栽培等)能够提升土壤硝化势和氧化还原电位,刺激土壤氮的矿化作用,使水稻处于NH+4与NO-3混合营养中,并能通过诱导水稻的生理特性及改善根系的吸收功能增强其抗旱性能,提高水稻产量及氮素利用率。光合作用是形成干物质的主要途径,土壤氮水平、氮形态与水稻光合速率紧密相关,提高叶片光合速率将有助于提高水稻的氮素利用率和产量。从稻田水分管理对土壤氮素形态特征、水稻氮吸收利用、光合速率及氮环境效应的影响等方面综述了国内外相关研究进展,并指出进一步的研究方向。  相似文献   
8.
Zhu X  Li Y  Luo X  Fei J 《Cellular signalling》2012,24(6):1134-1140
Chronic myelogenous leukemia (CML) results from the transformation of a primitive hematopoietic cell by the bcr-abl gene. RalA, one of the Ras superfamily of small GTPases, is a downstream molecule of bcr-abl fusion protein in ras signaling pathway, but its role in CML is poorly understood. Here, we first detected RalA level in CML cells, which is highly expressed and distributed mainly in the cytoplasm and/or partially in endomembrane. Next, siRNA was used to deplete RalA expression for elucidating its function. The results showed that siRNA RalA effectively inhibited cell viability, induced apoptosis and enhanced sensitivity of arsenic trioxide (ATO), and there are some synergistic effects of anti-CML between RalA siRNA and ATO. Finally, we found that ATO also could downregulate protein level of bcr-abl in K562 and KCL-22. Our research provides evidence that RalA might also serve as linchpin modulators in leukemia, and combinatorial therapies of dual inhibition of bcr-abl and ras signaling pathways have a great potential in treatment of CML.  相似文献   
9.
10.
The negative effects of water stress on rice can be alleviated by NH4+ nutrition. However, the effects of mixed nitrogen (N) nutrition (NO3? + NH4+) on resistance to water stress are still not well known. To investigate the response of rice growth to water stress and its relationship with photosynthetic characteristics, a hydroponic experiment supplying different N forms was conducted. Compared with NO3? nutrition, mixed‐N and NH4+ nutrition greatly alleviated the reduction of leaf area, chlorophyll content, and photosynthesis under water stress, whilst subsequently maintaining higher biomass. In contrast, water stress inhibited the root‐shoot ratios in NH4+‐ and mixed‐N‐supplied plants, indicating reduced root growth and higher photosynthate availability to shoots. The following key observations were made: (1) a similar stomatal limitation and low proportion of activated Rubisco were observed among the three different N nutrition regimes; (2) increased mesophyll conductance in NH4+‐ and mixed‐N‐supplied plants simultaneously stimulated leaf photosynthesis and improved the water use efficiency and (3), the maximum carboxylation rate and actual photochemical efficiency of photosystem II in NH4+‐ and mixed‐N‐supplied plants were significantly higher than that in NO3?‐supplied plants, thus resulting in higher photochemical efficiency under water stress. In conclusion, mixed‐N and NH4+ nutrition may be used to develop strategies for improved water stress resistance and stimulated biomass production under conditions of osmotic stress and possibly drought.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号