首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   9篇
  2023年   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   9篇
  2014年   6篇
  2013年   9篇
  2012年   4篇
  2010年   2篇
  2009年   1篇
  2008年   7篇
  2007年   5篇
  2006年   5篇
  2005年   4篇
  2004年   3篇
  2003年   1篇
  2002年   5篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   7篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   2篇
  1992年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1977年   2篇
  1972年   1篇
排序方式: 共有107条查询结果,搜索用时 140 毫秒
1.
1. This study examines phylogeography and phylogeny of the threatened stone crayfish, Austropotamobius torrentium, in order to elucidate the role of the Dinaric Karst geology in shaping the evolutionary history and genetic diversity of aquatic fauna in the western Balkans. Mitochondrial 16S rRNA and COI genes were partially sequenced from 188 and 159 crayfish, respectively, sampled from 70 localities. Phylogenetic relationships were reconstructed using four methods of phylogenetic inference. Divergence times between phylogroups were estimated in a Bayesian framework, and their demographic history was examined using neutrality tests and mismatch distribution analysis. 2. Seven geographically localised phylogroups separated by pronounced genetic gaps were found. Five of them have a distribution range within the northern‐central Dinaric (NCD) region, while the remaining two include populations from the southern Balkans (SB) and central and south‐eastern Europe (CSE). The oldest divergence event separated two NCD lineages from the rest of populations in the Late Miocene or Early Pliocene. Divergences amongst the five NCD phylogroups and SB + CSE occurred in the Pliocene. The most recent split separated SB and CSE phylogroups during the Late Pliocene. For both genes, uncorrected pairwise divergences between most of the phylogroups (4.1–8.7% for COI and 1.6–4.8% for 16S rRNA) were of the same range as, or higher than, some of the interspecific distances previously reported for the genus Austropotamobius. 3. Geographically isolated and deeply divergent cryptic monophyletic phylogroups within A. torrentium in the NCD region arose in the course of intensification of Neotectonic movements during the Pliocene and the beginning of the Pleistocene and the development of karstification that has heavily fragmented the palaeohydrography of the area. The results confirm a gradual north–south expansion of stone crayfish during the pre‐Pleistocene that preceded the rapid northward post‐glacial re/colonisation of central Europe (CSE phylogroup) through the Danube drainage. 4. Austropotamobius torrentium comprises morphologically cryptic but molecularly distinct taxa. Considering the relatively small geographical areas they inhabit, the NCD phylogroups of stone crayfish should be given the highest conservation priority.  相似文献   
2.
Small biopsy samples are used increasingly to assess the biomarker expression for prognostic information and for monitoring therapeutic responses prior to and during neoadjuvant therapy. The issue of intratumor heterogeneity of expression of biomarkers, however, has raised questions about the validity of the assessment of biomarker expression based on limited tissue samples. We examined immunohistochemically the expression of HER-2neu (p185erbB-2), epidermal growth factor receptor (EGFR), Bcl-2, p53, and proliferating cell nuclear antigen (PCNA) in 30 breast carcinomas using archived, paraffin embedded tissue and determined the extent of intratumor heterogeneity. Each section was divided into four randomly oriented discrete regions, each containing a portion of the infiltrating carcinoma. For each tumor, the entire lesion and four regions were analyzed for the expression of these markers. Scores of both membrane and cytoplasmic staining of HER-2neu and EGFR, scores of cytoplasmic staining of Bcl-2, and scores of nuclear staining of both p53 and PCNA were recorded. The intensity of staining and the proportion of immunostained cells were determined. A semiquantitative immunoscore was calculated by determining the sum of the products of the intensity and corresponding proportion of stained tumor cells. We analyzed both invasive (IDC) and in situ (DCIS) carcinomas. The Wilcoxon signed-rank test was used for paired comparisons between overall and regional immunoscores and between overall and regional percentages of stained cells. Spearman's correlation coefficients were used to assess the level of agreement of overall biomarker expression with each of the regions. Generalized linear models were used to assess overall and pair-wise differences in the absolute values of percent changes between overall and regional expression of biomarkers. For IDCs, there were no statistically significant differences in the expression of the biomarkers in terms of either the percentage of cells staining or the immunoscores when comparing the entire tumor with each region except for the lower EGFR expression of arbitrarily selected region 1 and lower p53 expression of region 1 compared to that of the entire tumor section. For DCIS, there were no statistically significant differences in the expression of the biomarkers between the entire tumor and each region except in PCNA of region 2 compared to that of entire tumor section. Positive correlation of immunoscores was observed between the entire tumor and each region as well as across all four regions for IDC. Similar observations were noted with DCIS except for HER-2neu and PCNA. No statistically significant differences were observed in the absolute values of percent changes of biomarker expression between overall and the four regions for both DCIS and IDC. Therefore, no significant intratumor heterogeneity in the expression of HER-2neu, Bcl-2, and PCNA was observed in IDC. Minor regional variations were observed for EGFR and p53 in IDC. Similarly, no significant regional variation in the expression of markers was observed in DCIS except for PCNA.  相似文献   
3.
The Crassulacean genus Aeonium is a well‐known example for plant species radiation on oceanic archipelagos. However, while allopatric speciation among islands is documented for this genus, the role of intra‐island speciation due to population divergence by topographical isolation or ecological heterogeneity has not yet been addressed. The aim of this study was to investigate intraspecific genetic structures and to identify spatial and ecological drivers of genetic population differentiation on the island scale. We analyzed inter simple sequence repeat variation within two island‐endemic Aeonium species of La Palma: one widespread generalist that covers a large variety of different habitat types (Ae. davidbramwellii) and one narrow ecological specialist (Ae. nobile), in order to assess evolutionary potentials on this island. Gene pool differentiation and genetic diversity patterns were associated with major landscape structures in both species, with phylogeographic implications. However, overall levels of genetic differentiation were low. For the generalist species, outlier loci detection and loci–environment correlation approaches indicated moderate signatures of divergent selection pressures linked to temperature and precipitation variables, while the specialist species missed such patterns. Our data point to incipient differentiation among populations, emphasizing that ecological heterogeneity and topographical structuring within the small scales of an island can foster evolutionary processes. Very likely, such processes have contributed to the radiation of Aeonium on the Canary Islands. There is also support for different evolutionary mechanisms between generalist and specialist species.  相似文献   
4.
5.
The purpose of this study was to compare the acute effects of general, specific and combined warm-up (WU) on explosive performance. Healthy male (n = 10) subjects participated in six WU protocols in a crossover randomized study design. Protocols were: passive rest (PR; 15 min of passive rest), running (Run; 5 min of running at 70% of maximum heart rate), stretching (STR; 5 min of static stretching exercise), jumping [Jump; 5 min of jumping exercises – 3x8 countermovement jumps (CMJ) and 3x8 drop jumps from 60 cm (DJ60)], and combined (COM; protocols Run+STR+Jump combined). Immediately before and after each WU, subjects were assessed for explosive concentric-only (i.e. squat jump – SJ), slow stretch-shortening cycle (i.e. CMJ), fast stretch-shortening cycle (i.e. DJ60) and contact time (CT) muscle performance. PR significantly reduced SJ performance (p =0.007). Run increased SJ (p =0.0001) and CMJ (p =0.002). STR increased CMJ (p =0.048). Specific WU (i.e. Jump) increased SJ (p =0.001), CMJ (p =0.028) and DJ60 (p =0.006) performance. COM increased CMJ performance (p =0.006). Jump was superior in SJ performance vs. PR (p =0.001). Jump reduced (p =0.03) CT in DJ60. In conclusion, general, specific and combined WU increase slow stretch-shortening cycle (SSC) muscle performance, but only specific WU increases fast SSC muscle performance. Therefore, to increase fast SSC performance, specific fast SSC muscle actions must be included during the WU.  相似文献   
6.
We surveyed nine diallelic polymorphic sites on the Y chromosomes of 1,544 individuals from Africa, Asia, Europe, Oceania, and the New World. Phylogenetic analyses of these nine sites resulted in a tree for 10 distinct Y haplotypes with a coalescence time of approximately 150,000 years. The 10 haplotypes were unevenly distributed among human populations: 5 were restricted to a particular continent, 2 were shared between Africa and Europe, 1 was present only in the Old World, and 2 were found in all geographic regions surveyed. The ancestral haplotype was limited to African populations. Random permutation procedures revealed statistically significant patterns of geographical structuring of this paternal genetic variation. The results of a nested cladistic analysis indicated that these geographical associations arose through a combination of processes, including restricted, recurrent gene flow (isolation by distance) and range expansions. We inferred that one of the oldest events in the nested cladistic analysis was a range expansion out of Africa which resulted in the complete replacement of Y chromosomes throughout the Old World, a finding consistent with many versions of the Out of Africa Replacement Model. A second and more recent range expansion brought Asian Y chromosomes back to Africa without replacing the indigenous African male gene pool. Thus, the previously observed high levels of Y chromosomal genetic diversity in Africa may be due in part to bidirectional population movements. Finally, a comparison of our results with those from nested cladistic analyses of human mtDNA and beta-globin data revealed different patterns of inferences for males and females concerning the relative roles of population history (range expansions) and population structure (recurrent gene flow), thereby adding a new sex-specific component to models of human evolution.   相似文献   
7.
Y. YOM-TOV  R. WILSON  AMOS AR 《Ibis》1986,128(1):1-8
The water budget of incubating Jackass Penguin eggs was studied on Marcus Island, South Africa, and complementary measurements were made in the laboratory. The mean ambient temperature was 16-5 "C and the mean humidity was 12-4 Torr (89% relative humidity). The temperature of incubated live and water-filled eggs ranged between 14oCand 37 oC. The mean calculated egg temperature was 34-9' C. The mean brood patch temperature was 37-1 oC, slightly lower than the cloacal temperature (37.8 oC). The mean brood patch area was about 38 cm2. The rate of water loss was 411 mg day-1. The total diffusive water loss during 37 days of incubation was, as predicted, 15-2% of the initial 100-3 g egg mass. The total pore number was 6245 per egg and the shell thickness was 577 fira. It is suggested that the eggshell parameters, incubation length and nesting behaviour are compensated in such a way that an egg-to-nest water vapour pressure difference lower than commonly found is sufficient to bring about the normal total water loss.  相似文献   
8.
The cell wall of the human pathogen Candida glabrata governs initial host-pathogen interactions that underlie the establishment of fungal infections. With the aim of identifying species-specific features that may directly relate to its virulence, we have investigated the cell wall of C. glabrata using a multidisciplinary approach that combines microscopy imaging, biochemical studies, bioinformatics, and tandem mass spectrometry. Electron microscopy revealed a bilayered wall structure in which the outer layer is packed with mannoproteins. Biochemical studies showed that C. glabrata walls incorporate 50% more protein than Saccharomyces cerevisiae walls and, consistent with this, have a higher mannose/glucose ratio. Evidence is presented that C. glabrata walls contain glycosylphosphatidylinositol (GPI) proteins, covalently bound to the wall 1,6-β-glucan, as well as proteins linked through a mild-alkali-sensitive linkage to 1,3-β-glucan. A comprehensive genome-wide in silico inspection showed that in comparison to other fungi, C. glabrata contains an exceptionally large number, 67, of genes encoding adhesin-like GPI proteins. Phylogenetically these adhesin-like proteins form different clusters, one of which is the lectin-like EPA family. Mass spectrometric analysis identified 23 cell wall proteins, including 4 novel adhesin-like proteins, Awp1/2/3/4, and Epa6, which is involved in adherence to human epithelia and biofilm formation. Importantly, the presence of adhesin-like proteins in the wall depended on the growth stage and on the genetic background used, and this was reflected in alterations in adhesion capacity and cell surface hydrophobicity. We propose that the large repertoire of adhesin(-like) genes of C. glabrata contributes to its adaptability and virulence.  相似文献   
9.
10.
Major intrinsic proteins (MIPs) facilitate the passive transport of small polar molecules across membranes. MIPs constitute a very old family of proteins and different forms have been found in all kinds of living organisms, including bacteria, fungi, animals, and plants. In the genomic sequence of Arabidopsis, we have identified 35 different MIP-encoding genes. Based on sequence similarity, these 35 proteins are divided into four different subfamilies: plasma membrane intrinsic proteins, tonoplast intrinsic proteins, NOD26-like intrinsic proteins also called NOD26-like MIPs, and the recently discovered small basic intrinsic proteins. In Arabidopsis, there are 13 plasma membrane intrinsic proteins, 10 tonoplast intrinsic proteins, nine NOD26-like intrinsic proteins, and three small basic intrinsic proteins. The gene structure in general is conserved within each subfamily, although there is a tendency to lose introns. Based on phylogenetic comparisons of maize (Zea mays) and Arabidopsis MIPs (AtMIPs), it is argued that the general intron patterns in the subfamilies were formed before the split of monocotyledons and dicotyledons. Although the gene structure is unique for each subfamily, there is a common pattern in how transmembrane helices are encoded on the exons in three of the subfamilies. The nomenclature for plant MIPs varies widely between different species but also between subfamilies in the same species. Based on the phylogeny of all AtMIPs, a new and more consistent nomenclature is proposed. The complete set of AtMIPs, together with the new nomenclature, will facilitate the isolation, classification, and labeling of plant MIPs from other species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号