首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3241篇
  免费   267篇
  国内免费   2篇
  2023年   17篇
  2022年   13篇
  2021年   51篇
  2020年   38篇
  2019年   41篇
  2018年   51篇
  2017年   48篇
  2016年   87篇
  2015年   145篇
  2014年   162篇
  2013年   217篇
  2012年   247篇
  2011年   261篇
  2010年   181篇
  2009年   177篇
  2008年   242篇
  2007年   232篇
  2006年   200篇
  2005年   199篇
  2004年   203篇
  2003年   165篇
  2002年   177篇
  2001年   53篇
  2000年   30篇
  1999年   31篇
  1998年   32篇
  1997年   26篇
  1996年   17篇
  1995年   23篇
  1994年   11篇
  1993年   14篇
  1992年   7篇
  1991年   10篇
  1990年   9篇
  1989年   6篇
  1988年   9篇
  1987年   4篇
  1986年   5篇
  1985年   9篇
  1984年   5篇
  1983年   11篇
  1982年   12篇
  1981年   8篇
  1980年   2篇
  1979年   3篇
  1978年   5篇
  1977年   5篇
  1976年   4篇
  1973年   2篇
  1968年   1篇
排序方式: 共有3510条查询结果,搜索用时 171 毫秒
1.
2.
The influence of both predator and prey size on the shift from a pulling to a drilling predatory response was examined in the intertidal octopus Octopus dierythraeus, using an experimental program. Additionally, selective drilling, where particular regions of the prey are targeted, was examined for a variety of bivalve and gastropod prey. O. dierythraeus always initially attempted to pull bivalves apart. Shells that were eventually drilled were always subjected to significantly more pulling attempts than those that could be pulled apart, indicating that octopus are willing to expend more energy to access the flesh quickly. There was no defined threshold where bivalve size caused an octopus to switch from a pulling to a drilling response. Instead, there was a broad size range where the octopus could adopt either handling method and it varied for each individual. Octopus may only able to pull open bivalves before the molecular ratchet or ‘catch’ mechanism that many bivalves possess is engaged. This might explain the lack of a relationship between either octopus or bivalve size and the success of pulling, as it is likely that when the bivalves were presented to individual octopus they were either setting the ‘catch’ mechanism, or had already engaged it. O. dierythraeus demonstrated selective drilling on a variety of molluscan prey, with penetration sites differing between prey species. O. dierythraeus targeted the valve periphery, which was the thinnest part of the shell, therefore minimizing handling time. O. dierythraeus always drilled gastropods, but did not target the thinnest regions of the shells, with drill site varying according to the morphology of the prey. Elongate species with pronounced aperture lips were drilled in the apical region, close to the columella on the side of the opercula whereas nonelongate species were drilled immediately above the aperture. The location of drilling sites may represent a trade-off between targeting the most effective places to inject paralyzing secretions and the mechanically simplest places to drill.  相似文献   
3.
4.
Although the Plodia interpunctella-granulovirus system is one of the most studied models for insect-pathogen interactions, there are relatively few precise data on the dynamics of the virus in coexisting populations of these two organisms. Previous work has suggested that resource quality, in terms of the diet supplied to P. interpunctella, has a strong effect on the population dynamics of host and pathogen. Here we investigate the impact of resource-dependent host patterns of abundance on pathogen dynamics and prevalence. In the laboratory, three populations of P. interpunctella feeding on a good quality food and infected with a granulovirus were compared with three populations also infected with a granulovirus but feeding on poor quality food. Populations feeding on good quality food produced larger adult moths, and had greater numbers of adult moths, healthy larvae, and virus-infected larvae. A higher proportion of larvae in these good quality populations were infected with virus, and adult moths exhibited cyclic fluctuations in abundance, unlike those on poor quality food. This cyclic behaviour was shown to be associated with cycles in the age structure of the larval population. Previous theoretical work suggests that these cycles may result from asymmetric competition between young and old larvae. Cyclic fluctuations in the proportion of infected larvae, that occurred on good, but not on poor quality food, were also shown to be related to cycles in the age structure of the larval population.  相似文献   
5.
6.
Letters     
Kit  Kovacs  Mike  Hammill 《Marine Mammal Science》1996,12(1):161-116
  相似文献   
7.
Although endolysosomal trafficking is well defined, how it is regulated and coordinates with cellular metabolism is unclear. To identify genes governing endolysosomal dynamics, we conducted a global fluorescence-based screen to reveal endomembrane effector genes. Screening implicated Phox (PX) domain–containing protein Mdm1 in endomembrane dynamics. Surprisingly, we demonstrate that Mdm1 is a novel interorganelle tethering protein that localizes to endoplasmic reticulum (ER)–vacuole/lysosome membrane contact sites (MCSs). We show that Mdm1 is ER anchored and contacts the vacuole surface in trans via its lipid-binding PX domain. Strikingly, overexpression of Mdm1 induced ER–vacuole hypertethering, underscoring its role as an interorganelle tether. We also show that Mdm1 and its paralogue Ydr179w-a (named Nvj3 in this study) localize to ER–vacuole MCSs independently of established tether Nvj1. Finally, we find that Mdm1 truncations analogous to neurological disease–associated SNX14 alleles fail to tether the ER and vacuole and perturb sphingolipid metabolism. Our work suggests that human Mdm1 homologues may play previously unappreciated roles in interorganelle communication and lipid metabolism.  相似文献   
8.
9.
Salivation to food cues is typically explained in terms of mere stimulus-response links. However, food cues seem to especially increase salivation when food is attractive, suggesting a more complex psychological process. Adopting a grounded cognition perspective, we suggest that perceiving a food triggers simulations of consuming it, especially when attractive. These simulations then induce salivation, which effectively prepares the body for eating the food. In two experiments, we systematically examined the role of simulations on salivation to food cues. As stimuli, both experiments used an attractive, a neutral, and a sour food, as well as a non-food control object. In Experiment 1, participants were instructed to simulate eating every object they would be exposed to. We then exposed them to each object separately. Salivation was assessed by having participants spit their saliva into a cup after one minute of exposure. In Experiment 2, we instructed half of participants to simulate eating each object, and half to merely look at them, while measuring salivation as in Experiment 1. Afterwards, participants rated their simulations and desire to eat for each object separately. As predicted, foods increased salivation compared to the non-food control object, especially when they were attractive or sour (Exp. 1 and 2). Importantly, attractive and sour foods especially increased salivation when instructed to simulate (Exp. 2). These findings suggest that consumption simulations play an important role in inducing salivary responses to food cues. We discuss directions for future research as well as the role of simulations for other appetitive processes.  相似文献   
10.
The onslaught on the World’s rhinoceroses continues despite numerous initiatives aimed at curbing it. When losses due to poaching exceed birth rates, declining rhino populations result. We used previously published estimates and growth rates for black rhinos (2008) and white rhinos (2010) together with known poaching trends at the time to predict population sizes and poaching rates in Kruger National Park, South Africa for 2013. Kruger is a stronghold for the south-eastern black rhino and southern white rhino. Counting rhinos on 878 blocks 3x3 km in size using helicopters, estimating availability bias and collating observer and detectability biases allowed estimates using the Jolly’s estimator. The exponential escalation in number of rhinos poached per day appears to have slowed. The black rhino estimate of 414 individuals (95% confidence interval: 343-487) was lower than the predicted 835 individuals (95% CI: 754-956). The white rhino estimate of 8,968 individuals (95% CI: 8,394-9,564) overlapped with the predicted 9,417 individuals (95% CI: 7,698-11,183). Density- and rainfall-dependent responses in birth- and death rates of white rhinos provide opportunities to offset anticipated poaching effects through removals of rhinos from high density areas to increase birth and survival rates. Biological management of rhinos, however, need complimentary management of the poaching threat as present poaching trends predict detectable declines in white rhino abundances by 2018. Strategic responses such as anti-poaching that protect supply from illegal harvesting, reducing demand, and increasing supply commonly require crime network disruption as a first step complimented by providing options for alternative economies in areas abutting protected areas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号