首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this investigation was to observe the influence of increasing amounts of preactivity and eccentric muscle activity imposed by three different jump types on concentric vertical jumping performance. Sixteen athletes involved in jumping-related sports at Appalachian State University, which is a Division IA school, performed a static jump (SJ), counter-movement jump (CMJ), and drop jump (DJ). Force, power, velocity, and jump height were measured during each jump type. In addition, muscle activity was measured from two agonist muscles (vastus lateralis, vastus medialis) and one antagonist muscle (biceps femoris). Preactivity and eccentric phase muscle activity of the agonist muscles (average integrated electromyography) was significantly (p < or = 0.05) higher during the DJ (preactivity, 0.2 +/- 0.11 mV; eccentric phase, 1.00 +/- 0.36 mV) in comparison with the CMJ (preactivity, 0.11 +/- 0.10 mV; eccentric phase, 0.45 +/- 0.17 mV). Peak concentric force was highest during the DJ and was significantly different among all three jump types (SJ, CMJ, DJ). Maximal jump height was significantly higher during the DJ (0.41 +/- 0.05 m) and CMJ (0.40 +/- 0.06 m) compared with the SJ (0.37 +/- 0.07 m). However, no significant difference in jump height existed between the CMJ and DJ. A positive energy balance, as assessed by force-displacement curves during the eccentric and concentric phases, was observed during the CMJ, and a negative energy balance was observed during the DJ. The data from this investigation indicate that a significant increase in concentric vertical jump performance is associated with increased levels of preactivity and eccentric phase muscle activity (SJ to CMJ). However, higher eccentric loading (CMJ to DJ) leads to a negative energy balance during the eccentric phase, which may relate to a non-significant increase in vertical jump height, even with coincidental increases in peak concentric force. Practitioners may want to focus on improving eccentric phase muscle activity through the use of plyometrics to improve overall jumping performance in athletes.  相似文献   

2.
The purpose of this investigation was to determine the concurrent validity of a commonly used electronic switch mat (ESM), or jump mat, compared with force plate (FP) data. The efficiency of collection and accuracy of data are paramount to athlete and player field testing for the strength and conditioning coach who often has access only to a jump mat. Ten subjects from 5 different sporting backgrounds completed 3 squat jumps (SJs), 3 countermovement jumps (CMJs), and 3 drop jumps (DJs). The jumps were performed on an AMTI FP operating at 1,000 Hz with an ESM positioned on top of the platform. All the subjects were experienced with the protocols involved with jump testing. The resulting absolute errors between FP and ESM data were 0.01, 0.02, and 0.01 m for CMJ, SJ, and DJ heights, respectively. However, the coefficient of variation for the DJ contact time (CT) was 57.25%, CMJ (r = 0.996), and SJ (r = 0.958) heights correlated very strongly with force platform data, and DJ data were not as strong (r = 0.683). Confidence interval tests revealed bias toward CMJ and SJ (p < 0.05). The jump mat can accurately calculate the CMJ height, SJ height, and reactive strength index for all the 3 jump protocols. However, the faster CTs and rapid movements involved in a DJ may limit its reliability when giving measures of CT, flight time, and height jumped for DJs. Strength and conditioning coaches can use such a jump mat device with the confidence that it is accurately producing valid measurements of their athlete's performance for CMJ and SJ slow SSC protocols.  相似文献   

3.
This experiment examined the effect of eccentric contraction-induced muscle damage on the stretch-shortening cycle and vertical leg spring stiffness during jumping activities. Ten moderately active male and female adult volunteers participated in this study (aged 23 +/- 2.3 years). Temporary muscle damage to the knee extensors was administered by a bout of eccentric contractions on an isokinetic dynamometer. Measurements were obtained of maximum voluntary force and of take-off velocities for single-leg countermovement jumps (CMJs), squat jumps (SJs), and drop jumps (DJs), performed on a specially constructed sledge and force plate apparatus. These measurements were obtained before and after the damage intervention, and the undamaged leg was used as a control. The results indicated that eccentric muscle damage significantly affected stretch-shortening cycle performance by causing relatively greater reductions in SJ performance than CMJ or DJ. The muscle damage intervention also significantly increased leg-spring stiffness, which indicates that the changes in leg stiffness may be an important adaptation resulting from eccentric exercise.  相似文献   

4.
In the present study we investigated displacement, time, velocity and acceleration history of center of mass (COM) and electrical activity of knee extensors to estimate the dominance of the factors influencing the vertical velocity in squat jumps (SJs), countermovement jumps (CMJs) and drop jumps (DJs) performed with small (40°) and large (80°) range of joint motion (SROM and LROM). The maximum vertical velocity (v4) was 23.4% (CMJ) and 7.8% (DJ) greater when the jumps were performed with LROM compared with SROM (p < 0.05). These differences are considerably less than it could be expected from the greater COM and knee angular displacement and duration of active state. This small difference can be attributed to the greater deceleration during eccentric phase (CMJ:32.1%, DJ:91.5%) in SROM than that in LROM. v4 was greater for SJ in LROM than for SJ in SROM indicating the significance of the longer active state and greater activation level (p < 0.001). The difference in v4 was greater between SJ and CMJ in SROM (38.6%) than in LROM (9.0%), suggesting that elastic energy storage and re-use can be a dominant factor in the enhancement of vertical velocity of CMJ and DJ compared with SJ performed with SROM.  相似文献   

5.
Jumping is an important performance component of many sporting activities. A number of training modalities have been used to enhance jumping performance including plyometrics. The positive effects of plyometric training on jumping performance are a function of the stretch-shortening cycle phenomenon. However, there has been little research on the effects of the surface on jumping performance. This study examined the effects of performing 2 different plyometric exercises, depth jump (DJ) and counter movement jump (CMJ), on noncompliant (ground) and compliant (mini-trampoline) surfaces. Male participants (N = 20; age = 21.8 +/- 3.8 years; height = 184.6 +/- 7.6 cm; mass = 83.6 +/- 8.2 kg) randomly performed 10 CMJ and 10 DJ on compliant and noncompliant surfaces. Kinematic data were determined via 2-dimensional high-speed video. There were significant (p < 0.05) differences in DJ and CMJ joint and segment range of movement for ankle, knee, hip and trunk, indicating less crouch when the participants performed plyometric exercises on the compliant surface.  相似文献   

6.
Previous research has highlighted the importance of muscle and tendon structure to stretch shortening cycle performance. However, the relationships between muscle and tendon structure to performance are highly dependent on the speed and intensity of the movement. The purpose of this study was to determine if muscle and tendon structure is associated with the rate of force development (RFD) throughout static squat jump (SJ), countermovement jump (CMJ), and drop jump (DJ; 30-cm height). Twenty-five strength- and power-trained men participated in the study. Using ultrasonography, vastus lateralis (VL) and gastrocnemius (GAS) pennation (PEN) and fascicle length (FL), and Achilles tendon (AT) thickness and length were measured. Subjects then performed SJ, CMJ, and DJ, during which RFD was calculated over time 5 distinct time intervals. During CMJs, early RFD could be predicted between 0 and 10 milliseconds by both GAS-FL (r2 = 0.213, β = 0.461) and AT-length (r2 = 0.191, β = 20.438). Between 10 and 30 milliseconds GAS-FL was a significant predictor of CMJ-RFD (r2 = 0.218, β = 0.476). During DJ, initial RFD (0-10 milliseconds) could be significantly predicted by GAS-FL (r2 = 0.185, β = 20.434), VL-PEN (r2 = 0.189, β = 0.435), and GAS-PEN (r2 = 0.188, β = 0.434). These findings suggest that longer ATs may have increased elasticity, which can decrease initial RFD during CMJ; thus, their use in talent identification is not recommended. The GAS fascicle length had an intensity-dependent relationship with RFD, serving to positively predict RFD during early CMJs and an inverse predictor during early DJs. During DDJs, subjects with greater PEN were better able to redirected initial impact forces. Although both strength and plyometric training have been shown to increase FL, only heavy strength training has been shown to increase PEN. Thus, when a high eccentric load or multiple jumps are required, heavy strength training might be used to elicit muscular adaptations that are suited to fast force production during jumping.  相似文献   

7.
The purpose of this study was to evaluate the immediate influence of eccentric muscle action on vertical jump performance in athletes performing sports with a high demand of explosive force development. In this randomized, controlled crossover trial, 13 Swiss elite athletes (national team members in ski jump, ski alpine, snowboard freestyle and alpine, ski freestyle, and gymnastics) with a mean age of 22 years (range 20-28) were randomized into 2 groups. After a semistandardized warm-up, group 1 did 5 jumps from a height of 60 cm, landing with active stabilization in 90 degrees knee flexion. One minute after these modified drop jumps, they performed 3 single squat jumps (SJ) and 3 single countermovement jumps (CMJ) on a force platform. The athletes repeated the procedure after 1 hour without the modified drop jumps. In a crossover manner, group 2 did the first warm-up without and the second warm-up with the modified drop jumps. Differences of the performance (jump height and maximal power) between the different warm-ups were the main outcomes. The mean absolute power and absolute height (without drop jumps) were CMJ 54.9 W.kg(-1) (SD = 4.1), SJ 55.0 W.kg(-1) (SD = 5.1), CMJ 44.1 cm (SD = 4.1), and SJ 40.8 cm (SD = 4.1). A consistent tendency for improvement with added drop jumps to the warm-up routine was observed compared with warm-up without drop jumps: maximal power CMJ +1.02 W.kg(-1) (95% confidence interval [CI] = +0.03 to +2.38), p = 0.045; maximal power SJ +0.8 W.kg(-1) (95% CI = -0.34 to +2.02), p = 0.148; jump height CMJ +0.48 cm (95% CI = -0.26 to +1.2), p = 0.182; SJ +0.73 cm (95% CI = -0.36 to +1.18), p = 0.169. Athletes could add modified drop jumps to the warm-up before competitions to improve explosive force development.  相似文献   

8.
The purpose of this study was to evaluate the effects of a complex training program, a combined practice of weight training and plyometrics, on explosive strength development of young basketball players. Twenty-five young male athletes, aged 14-15 years old, were assessed using squat jump (SJ), countermovement jump (CMJ), Abalakov test (ABA), depth jump (DJ), mechanical power (MP), and medicine ball throw (MBT), before and after a 10-week in-season training program. Both the control group (CG; n = 10) and the experimental group (EG; n = 15) kept up their regular sports practice; additionally, the EG performed 2 sessions per week of a complex training program. The EG significantly improved in the SJ, CMJ, ABA, and MBT values (p < 0.05). The CG significantly decreased the values (p < 0.05) of CMJ, ABA, and MP, while significantly increasing the MBT values (p < 0.05). Our results support the use of complex training to improve the upper and lower body explosivity levels in young basketball players. In conclusion, this study showed that more strength conditioning is needed during the sport practice season. Furthermore, we also conclude that complex training is a useful working tool for coaches, innovative in this strength-training domain, equally contributing to a better time-efficient training.  相似文献   

9.
The purpose of this study was to determine the effects of 16 weeks of contrast training (CT) on older adults (with different levels of physical conditioning) in vertical jump performance (squat jump [SJ], countermovement jump [CMJ], CMJ during 15 seconds [CMJ15], depth jump [DJ]), body weight, fat percentage, muscle mass (MM), muscle cross-sectional area ([CSA] of the arm and thigh) and biochemical parameters (creatine kinase [CK], creatinine, and urea). Sixteen older (63.55 ± 6.89 years) recreational master runners (A) and 16 physically active older people (60.30 ± 5.18 years) though not athletes (NA), participated in the CT using a combination of heavy-resistance and explosive exercise. The dependent variables were measured pretraining and posttraining. The CT resulted in significant improvements (α = 0.05) for both groups in jump performance. The SJ height improved in NA by 21.68% and in A by 21.81%, the CMJ height increased in NA by 21.51% and in A by 14.81%, the DJ height increased in NA by 26.45% and in A by 7.43%, and CMJ15 increased in NA by 6.20% and in A by 6.17%). Significant improvements in MM (16.44% in NA and 14.78% in A), thigh CSA (19.68% in NA and 21.67% in A), and arm CSA (7.43% in NA and 5.52% in A), and significant decreases in creatinine (8.65%) and CK (25.49%) in A were observed. In conclusion, CT improved vertical jump performance and MM in both groups, regardless of the training history and current physical activity of each group. These improvements were accompanied by a slight decrease in body fat but no changes in total body weight. These findings suggest that CT can have a significant effect on maximal jump height and MM in NA and A.  相似文献   

10.
Da Silva-Grigoletto, ME, de Hoyo, M, Sa?udo, B, Corrales, L, and García-Manso, JM. Determining the optimal whole-body vibration dose-response relationship for muscle performance. J Strength Cond Res 25(12): 3326-3333, 2011-The aim of this investigation was twofold: first, to determine the optimal duration of a single whole-body vibration (WBV) exposure (phase 1) and second to find out the ideal number of sets per intervention to maximize muscle performance (phase 2). All participants were young (age: 19.4 ± 1.6 years), healthy, physically active men. In both studies, a 30-Hz frequency and a 4-mm peak-to-peak displacement were used. In phase 1, subjects (n = 30) underwent 3 sets of different durations (30, 60, and 90 seconds), whereas in phase 2, subjects (n = 27) underwent 3 interventions where the duration remained fixed at 60 seconds, and the number of sets performed (3, 6, or 9) was modified. The recovery time between sets was set at 2 minutes. In all interventions, each set consisted of 1 isometric repetition in a squat position with knees flexed at 100°. Before and after each session, jump height (countermovement jump [CMJ] and squat jump [SJ]) and power output in half squat (90° knee flexion) were assessed. In phase 1, an improvement in jump ability and power output was observed after the 30- and 60-second intervention (p < 0.01), whereas the 90 second intervention, participants just experienced a decrease in SJ and CMJ (p < 0.05). When comparing the different protocols, the greatest response was achieved using 60 seconds (p < 0.05), which was therefore considered as the optimal duration to be used in phase 2. In the second phase, improvements in jump ability and power output were found with 3 and 6 sets (p < 0.05), whereas with 9 sets, participants actually experienced a decrease in these variables. Intergroup comparison showed a greater effect for the program of 6 sets (p < 0.05). In conclusion, a WBV intervention consisting of six 60-second sets produces improved muscle performance measured by SJ, CMJ, and power output.  相似文献   

11.
This study was aimed to analyze the loss of muscle explosive force in the early phase of eccentric exercise-induced damage, and its possible relationships with muscle soreness and blood creatine kinase (CK) levels. Squat jump (SJ) and countermovement jump (CMJ) heights decreased in response to an eccentric exercise (120 eccentric actions of the knee extensors), with reductions that persisted at least for 24 h. The SJ/CMJ ratio was not significantly modified. Blood CK levels changed significantly over time and CK activity was significantly higher at 6 and at 24 h when compared to values obtained immediately after the eccentric exercise. Muscle soreness perceived at 6 h was slightly higher than that experienced just after finalizing the exercise and reached a clearly upper value at 24 h. A highly significant relationship between SJ and CMJ height loss was observed. CK activity at 24 h was significantly related to the SJ height loss at 6 h and to both the SJ height loss and the CMJ height loss immediately after the exercise. In summary, eccentric exercise induced a reduction in the explosive force generating capacity that affected in a similar way the pure concentric jump (SJ) and the jump eliciting the stretch-shortening cycle (CMJ). Results obtained suggest that CK activity is a better predictor of explosive force reduction than soreness, at least when values close to the peak are used.  相似文献   

12.
Although it is suggested that periods of naturally occurring accelerated adaptation may exist for various physical parameters, it would appear that no such evidence exists for stretch-shortening cycle (SSC) development. Two hundred and fifty male youths aged 7-17 years were tested for squat (SJ) and countermovement jump (CMJ) height, reactive strength index (RSI), and leg stiffness, with analyses of variance used to establish any significant between-group differences. Additionally, to ascertain the existence of periods of accelerated adaptation, inferences were made about the magnitudes of change between consecutive chronological age groups in relation to the smallest worthwhile change. The largest mean differences (±90% confidence limits) occurred between age groups 10 and 11 (G10-G11) for squat jump (SJ) height (21.61 ± 12.08-31.94%), CMJ height (20.80 ± 11.1-44.1%), and RSI (26.51 ± 11.07-44.10%); and between G12 and G13 for SJ (15.31 ± 7.47-23.73%) and CMJ (16.09 ± 7.50-25.38%) height. Negative mean differences occurred between G11 and G12 for SJ height (-1.32 ± -9.30 to 7.37%), CMJ jump height (-7.68 ± -15.15 to 0.45%) and RSI (-11.48 ± -22.21 to 0.74%); and between G10 and G11 for leg stiffness (-8.87 ± -18.85 to 2.34%). It would appear almost certain that windows of accelerated adaptation may exist for SJ and CMJ height and RSI in male youths; however, leg stiffness results would suggest that fast-SSC function may follow a different developmental trend.  相似文献   

13.
The aim of this study was to investigate the recovery process of a maximal stretch-shortening cycle (SSC) fatigue workout on the biomechanical performance of drop jump (DJ) and rebound jump (RBJ) on a force sledge apparatus. Thirteen elite level rugby players performed sledge DJs and RBJs before and 15, 45, 120, and 300 seconds after a maximum SSC fatigue workout. Flight time, ground contact time (CT), peak force, reactive strength index (RSI), and leg-spring stiffness were the dependent variables. The DJ results showed that after 15 seconds recovery, there was a significant reduction in flight time (FT) (p < 0.01), RSI (p < 0.001), peak force (p < 0.01), and leg stiffness (p < 0.001). Similarly, the results for the RBJ indicated that the fatigue workout significantly reduced FT (p < 0.001), peak force (p < 0.01), RSI (p < 0.01), and significantly increased CT (p < 0.05) at the 15-second interval. The results also indicated a potentiation effect at the 300-second interval because of significant increases in RSI, peak force, and leg stiffness (p < 0.05) for the RBJ and significant increases in RSI (p < 0.05), peak force, and leg stiffness (p < 0.01) and a significant decrease in ground CT (p < 0.05) for the DJ. A maximal SSC fatigue workout had both an inhibiting and potentiating effect on DJ and RBJ performance depending on the recovery interval. The efficiency of the SSC function was reduced immediately after the cessation of the fatigue workout. A potentiation effect was evident for both jumps 300 seconds postfatigue.  相似文献   

14.
To investigate the influence of skeletal muscle fiber composition on the mechanical performance of human skeletal muscle under dynamic conditions, 34 physical education students with differing muscle fiber composition (M. vastus lateralis) were used as subjects to perform maximal vertical jumps on the force-platform. Two kinds of jumps were performed: one from a static starting position (SJ), the other with a preliminary counter-movement (CMJ). The calculated mechanical parameters included height of rise of center of gravity (h), average force (F), net impulse (NI) and average mechanical power (W). It was observed that the percentage of fast twitch fibers was significantly related (p less than 0.05--0.01) to these variables in SJ condition and also to h and NI of the positive work phase in CMJ. It is concluded that skeletal muscle fiber composition also determines performance in a multijoint movement. The result is explainable through the differences in the mechanical characteristics of the motor units and their respective muscle fibers.  相似文献   

15.
The purpose of the present study was to investigate the effect of stretch-shortening-cycle-induced muscle damage on the time course of mechanical behaviour in the drop jump. Ten healthy male subjects performed submaximal stretch-shortening cycle (SSC) exercise on a special sledge apparatus. Exhaustion occurred on average within 3 min. A drop jump (DJ) test from a 50-cm height was performed before and immediately after the sledge exercise as well as 2 h, 2 days and 4 days later. The fatigue exercise showed relatively high blood lactate concentration [12.5 (SD 2.6) mmol x l(-1)] and an increase of serum creatine kinase (CK) activity delayed by 2 days [540 (SD 407) U x l(-1)]. The initial decline in the jump performance (before - immediately after) was related negatively to the early recovery in performance (immediately after 2 h) (P < 0.05). The early recovery of the knee joint moment at the end of stretch showed a negative correlation to the delayed decrease in DJ performance (2 h 2 days) (P < 0.01). Thus, the DJ performance showed an initial decline followed by an early recovery and a secondary decline. Both the initial decline and early recovery in the knee joint moment at the end of stretch were related to the corresponding initial (after 2 h) (P < 0.05) and secondary increases (2 h - 2 days) (P < 0.01) in CK. It is suggested that the early recovery as well as the initial decline in the knee joint function could depend on the degree of muscle damage. Delayed decrease in initial stiffness (2 h - 2 days) was negatively related to the corresponding changes in the knee joint angle at touch down in DJ (P < 0.001). These interactions would imply that the decrease in the stiffness regulation and the modulation of the prelanding motor control might be attributable to secondary muscle damage during 2 days after the SSC exercise. Therefore, it may be suggested that the changes in the DJ performance after the exhausting SSC exercise accompany the progress of muscle damage observed by the corresponding increase in serum CK concentration and the corresponding deterioration of stiffness regulation and motor control in DJ.  相似文献   

16.
Despite the large number of studies that have examined the acute effects of different warm up modalities (WU) on physical performance, none of them have documented the time course of potential performance recovery in tennis players. The aim of this study was twofold: (a) to analyze and compare the acute effects of two different WU modalities (traditional WU [TWU] and dynamic WU [DWU]) on physical performance (i.e., CMJ, sprint, serve speed and accuracy) in elite junior players, as well as (b) to monitor the time course of any WU-induced changes after 30 and 60 min of simulated match-play. Twelve junior elite players completed both WUs modalities (TWU and DWU) in a counterbalanced order on separate days. In each experimental session, counter movement jump (CMJ), 20-m sprint, tennis serve speed and accuracy tests were performed before (immediately after TWU or DWU) during (30 min) and after 60 min of a simulated match play. Measures were compared via four factorial (WU intervention and time) repeated measures ANOVAs. There were main effects of WU (TWU and DWU) throughout the time for all the variables analysed. The results indicate that DWU routine led to significantly faster 20 m sprint times and higher CMJs as well as faster and more accurate tennis serves at both post warm-up and 30 min match-play testing moments in comparison with the scores reported by the TWU routine (p < 0.05; positive effects with a probability of >75–99%). No significant intergroup differences were found at 60-min match-play testing moment in any variable (except for the 20 m sprint). Therefore, the findings of this study recommend for optimal performance in these elite tennis players, DWU routines should be performed prior to formal training and competition rather than TWU routines.  相似文献   

17.
Storage and utilization of elastic strain energy during jumping   总被引:1,自引:0,他引:1  
  相似文献   

18.
This study examined the effects of a progressive resistance training program in addition to soccer training on the physical capacities of male adolescents. Eighteen soccer players (age: 12-15 years) were separated in a soccer (SOC; n = 9) and a strength-soccer (STR; n = 9) training group and 8 subjects of similar age constituted a control group. All players followed a soccer training program 5 times a week for the development of technical and tactical skills. In addition, the STR group followed a strength training program twice a week for 16 weeks. The program included 10 exercises, and at each exercise, 2-3 sets of 8-15 repetitions with a load 55-80% of 1 repetition maximum (1RM). Maximum strength ([1RM] leg press, bench-press), jumping ability (squat jump [SJ], countermovement jump [CMJ], repeated jumps for 30 seconds) running speed (30 m, 10 x 5-m shuttle run), flexibility (seat and reach), and soccer technique were measured at the beginning, after 8 weeks, and at the end of the training period. After 16 weeks of training, 1RM leg press, 10 x 5-m shuttle run speed, and performance in soccer technique were higher (p < 0.05) for the STR and the SOC groups than for the control group. One repetition maximum bench press and leg press, SJ and CMJ height, and 30-m speed were higher (p < 0.05) for the STR group compared with SOC and control groups. The above data show that soccer training alone improves more than normal growth maximum strength of the lower limps and agility. The addition of resistance training, however, improves more maximal strength of the upper and the lower body, vertical jump height, and 30-m speed. Thus, the combination of soccer and resistance training could be used for an overall development of the physical capacities of young boys.  相似文献   

19.
The purpose of this study was to evaluate the effects of sprint training on muscle function and dynamic athletic performance and to compare them with the training effects induced by standard plyometric training. Male physical education students were assigned randomly to 1 of 3 groups: sprint group (SG; n = 30), plyometric group (PG; n = 30), or control group (CG; n = 33). Maximal isometric squat strength, squat- and countermovement jump (SJ and CMJ) height and power, drop jump performance from 30-cm height, and 3 athletic performance tests (standing long jump, 20-m sprint, and 20-yard shuttle run) were measured prior to and after 10 weeks of training. Both experimental groups trained 3 days a week; SG performed maximal sprints over distances of 10-50 m, whereas PG performed bounce-type hurdle jumps and drop jumps. Participants in the CG group maintained their daily physical activities for the duration of the study. Both SG and PG significantly improved drop jump performance (15.6 and 14.2%), SJ and CMJ height ( approximately 10 and 6%), and standing long jump distance (3.2 and 2.8%), whereas the respective effect sizes (ES) were moderate to high and ranged between 0.4 and 1.1. In addition, SG also improved isometric squat strength (10%; ES = 0.4) and SJ and CMJ power (4%; ES = 0.4, and 7%; ES = 0.4), as well as sprint (3.1%; ES = 0.9) and agility (4.3%; ES = 1.1) performance. We conclude that short-term sprint training produces similar or even greater training effects in muscle function and athletic performance than does conventional plyometric training. This study provides support for the use of sprint training as an applicable training method of improving explosive performance of athletes in general.  相似文献   

20.
The present study examined the factors contributing to performance of a backward overhead medicine ball throw (B-MBT) across 2 types of athletes. Twenty male volleyball players (jump athletes) and 20 wrestlers (nonjump athletes) were evaluated on 4 measures of power, including B-MBT, chest medicine ball throw (C-MBT), countermovement vertical jump (CMJ), and power index (PI). The athletes also completed 3 measures of strength: a 1-repetition-maximum (1RM) bench press (BP), a 1RM leg press (LP), and combined BP + LP strength. Jump athletes demonstrated greater absolute scores for CMJ, C-MBT, and B-MBT (p < 0.05), whereas nonjump athletes demonstrated greater strength scores for BP and for BP + LP (p < 0.05). When performances were examined on a relative basis, jump athletes achieved superior scores for C-MBT (p < 0.05), whereas nonjump athletes had greater scores for BP, LP, and BP + LP (p < 0.05). For both groups, B-MBT had strong correlations with PI (r = 0.817 [jump] and 0.917 [nonjump]), whereas for C-MBT, only nonjump athletes demonstrated a strong correlation (r = 0.842). When expressed in relative terms, B-MBT was strongly correlated with C-MBT (r = 0.762 [jump] and 0.835 [nonjump]) and CMJ (r = 0.899 [jump] and 0.945 [nonjump]). Only nonjump athletes demonstrated strong correlations with strength for absolute LP (r = 0.801) and BP + LP (r = 0.810) strength. The interaction of upper- and lower-body strength and power in the performance of a B-MBT appears complex, with the contributing factors differing for athletes with divergent skill sets and performance demands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号