首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2001年   3篇
  1990年   2篇
  1987年   2篇
  1940年   2篇
  1939年   1篇
  1935年   2篇
  1934年   1篇
  1933年   1篇
  1931年   1篇
排序方式: 共有22条查询结果,搜索用时 64 毫秒
1.
Rotmann  K. W. G. 《Hydrobiologia》1990,204(1):325-330
Since World War II the greater Saldanha Bay lagoon system, South Africa, has been an important Gracilaria producer. Two agar factories, built in the 1960's, used Gracilaria from Saldanha Bay as their raw material. In the early 1970's the industry was destroyed as a result of dredging and marine construction operations to establish a harbor in the bay for loading ore. These environmental changes destroyed stocks and prevented the previously significant beachings of the seaweed from occurring. After a few years of no or very low commercial production, the resource slowly started to recover. The size of Gracilaria drifts increased over the following eight years to approximately one-third of the original output. This trend seems to continue. Although the stocks and resultant drifts are unlikely to recover fully to their original quantity, current production is already sufficient to ensure re-establishment of a seaweed industry in Saldanha Bay. This could have considerable socio-economic impact on the area.  相似文献   
2.
Ohne ZusammenfassungDie Arbeit wurde mit Hilfe der Freiburger Wissenschaftlichen Gesellschaft ausgeführt.  相似文献   
3.
We have previously shown that activation of PKC (protein kinase C) results in internalization of hCAT-1 [human CAT-1 (cationic amino acid transporter 1)] and a decrease in arginine transport [Rotmann, Strand, Martiné and Closs (2004) J. Biol. Chem. 279, 54185-54192]. However, others found increased transport rates for arginine in response to PKC activation, suggesting a differential effect of PKC on different CAT isoforms. Therefore we investigated the effect of PKC on hCAT-3, an isoform expressed in thymus, brain, ovary, uterus and mammary gland. In Xenopus laevis oocytes and human U373MG glioblastoma cells, hCAT-3-mediated L-arginine transport was significantly reduced upon treatment with compounds that activate classical PKC. In contrast, inactive phorbol esters and an activator of novel PKC isoforms had no effect. PKC inhibitors (including the PKCalpha-preferring Ro 31-8280) reduced the inhibitory effect of the PKC-activating compounds. Microscopic analyses revealed a PMA-induced reduction in the cell-surface expression of fusion proteins between hCAT-3 and enhanced green fluorescent protein expressed in X. laevis oocytes and glioblastoma cells. Western-blot analysis of biotinylated surface proteins demonstrated a PMA-induced decrease in hCAT-3 in the plasma membrane, but not in total protein lysates. Pretreatment with a PKC inhibitor also reduced this PMA effect. It is concluded that similar to hCAT-1, hCAT-3 activity is decreased by PKC via reduction of transporter molecules in the plasma membrane. Classical PKC isoforms seem to be responsible for this effect.  相似文献   
4.
Rapidly generated high-titer Semliki Forest virus (SFV) vectors can infect numerous mammalian cell lines and primary cell cultures, and result in high levels of transgene expression. SFV-based expression of transmembrane receptors has been characterized by specific ligand-binding activity and functional responses. Adaptation of the SFV technology for mammalian suspension cultures has allowed the production of hundreds of milligrams of recombinant receptor for purification and structural studies. The same SFV stock solutions used for the infection of mammalian cells in culture have also been successfully applied for efficient transgene expression in organotypic hippocampal slices, as well as in vivo in rodent brain.  相似文献   
5.
Semliki Forest virus vectors (SFV) have been developed for efficient transgene expression to result in high receptor yields(50–200 pmol receptor/mg protein) in a variety of mammalian host cells. Transfer of the SFV technology to mammalian cells growing in suspension cultures has made it feasible to produce hundreds of milligrams of receptor proteins in a short time. Large-scale production, however, raises the questions of the safety of handling virally infected cells for down-stream processing. Analysis of cell culture medium and SFV-infected cells revealed that some infectious particles were still present. Replacement of virus-containing medium at 2 h post-infection efficiently removed the majority of infectious replication-deficient SFV particles. Washes with PBS further reduced the number of infectious particles significantly both in the medium and associated with cells to levels that allowed safe handling of SFV-infected cells outside the cell culture facility for biochemical, pharmacological, or electrophysiological assays or down-stream processes in connection to receptor purification. Furthermore, engineering of novel temperature-sensitive mutant SFV vectors resulted in temperature-controlled transgene expression, which completely eliminates the risk of contaminating laboratory personnel. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
6.
Resistance to several anti-malarial drugs has been associated with polymorphisms within the P-glycoprotein homologue (Pgh-1, PfMDR1) of the human malaria parasite Plasmodium falciparum. Pgh-1, coded for by the gene pfmdr1, is predominately located at the membrane of the parasite's digestive vacuole. How polymorphisms within this transporter mediate alter anti-malarial drug responsiveness has remained obscure. Here we have functionally expressed pfmdr1 in Xenopus laevis oocytes. Our data demonstrate that Pgh-1 transports vinblastine, an established substrate of mammalian MDR1, and the anti-malarial drugs halofantrine, quinine and chloroquine. Importantly, polymorphisms within Pgh-1 alter the substrate specificity for the anti-malarial drugs. Wild-type Pgh-1 transports quinine and chloroquine, but not halofantrine, whereas polymorphic Pgh-1 variants, associated with altered drug responsivenesses, transport halofantrine but not quinine and chloroquine. Our data further suggest that quinine acts as an inhibitor of Pgh-1. Our data are discussed in terms of the model that Pgh-1-mediates, in a variant-specific manner, import of certain drugs into the P. falciparum digestive vacuole, and that this contributes to accumulation of, and susceptibility to, the drug in question.  相似文献   
7.
Agar has, with the exception of certain retail markets in the Far East, specifically Japan, traditionally been sold to the industrial user. Small quantities are consumed in Islamic countries during Ramadan and in the Germanic countries as a food thickener and a laxative. However, outside of Japan, no significant marketing effort has ever been undertaken with a view to increase the demand for agar by consumers.A marketing plan is suggested to change this situation. All possible uses for agar by the consumer have been identified and studied. The special features of the product, together with certain packaging, are highlighted. Potential markets for these features are identified. Strategies for the development of these markets have been developed. The overall plan is now in a state of final review and just prior to implementation. The product launch should generate a significant consumer awareness which will translate into demand, thereby increasing the market for agar in various forms, formulations and packagings.  相似文献   
8.
Activation of protein kinase C (PKC) downregulates the human cationic amino acid transporters hCAT-1 (SLC7A1) and hCAT-3 (SLC7A3) (Rotmann A, Strand D, Martiné U, Closs EI. J Biol Chem 279: 54185-54192, 2004; Rotmann A, Vekony N, Gassner D, Niegisch G, Strand D, Martine U, Closs EI. Biochem J 395: 117-123, 2006). However, others found that PKC increased arginine transport in various mammalian cell types, suggesting that the expression of different arginine transporters might be responsible for the opposite PKC effects. We thus investigated the consequence of PKC activation by phorbol-12-myristate-13-acetate (PMA) in various human cell lines expressing leucine-insensitive system y(+) [hCAT-1, hCAT-2B (SLC7A2), or hCAT-3] as well as leucine-sensitive system y(+)L [y(+)LAT1 (SLC7A7) or y(+)LAT2 (SLC7A6)] arginine transporters. PMA reduced system y(+) activity in all cell lines tested, independent of the hCAT isoform expressed, while mRNAs encoding the individual hCAT isoforms were either unchanged or increased. System y(+)L activity was also inhibited by PMA. The extent and onset of inhibition varied between cell lines; however, a PMA-induced increase in arginine transport was never observed. In addition, when expressed in Xenopus laevis oocytes, y(+)LAT1 and y(+)LAT2 activity was reduced by PMA, and this inhibition could be prevented by the PKC inhibitor bisindolylmaleimide I. In ECV304 cells, PMA-induced inhibition of systems y(+) and y(+)L could be prevented by G?6976, a specific inhibitor of conventional PKCs. Thymelea toxin, which activates preferentially classical PKC, had a similar inhibitory effect as PMA. In contrast, phosphatidylinositol-3,4,5-triphosphate-dipalmitoyl, an activator of atypical PKC, had no effect. These data demonstrate that systems y(+) and y(+)L are both downregulated by classical PKC.  相似文献   
9.
10.
Rapid expression of recombinant proteins for structure determination is one of the major challenges in pharmaceutical and academic research, since the number of potential drug targets has increased significantly in the last decade. Despite the fact that the baculovirus expression vector system is widely used for this purpose, the system is hampered by three very slow and tedious procedures, namely generation of high titer baculovirus stock, determination of the virus titer and discovery of the best conditions for protein expression. We herein describe the development of the ultraBac system to address and overcome these issues for protein expression in insect cells. We have established a new baculovirus expression technology for insect cells that is based on co-expression of GFP with target genes, a new regime for cell culturing and a highly efficient purification and enrichment procedure for recombinant baculovirus particles. Co-expression of GFP is used to monitor the infection of insect cells, to simplify titer determination and to optimize expression conditions. The new regime for cell culturing with increased viability of non-infected insect cells and its combination with the massive enrichment of virus particles via high-speed centrifugation enables the production of large amounts of recombinant virus in a very short period of time. By combining these techniques and by using the bicistronic vector pUltraBac-1, we have been able to cut the time-lines for protein expression in insect cells by half, approaching those for protein production in Escherichia coli. This new expression system is a significant step forward towards industrialized protein production in both, industry and academia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号