首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   3篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   5篇
  2012年   2篇
  2011年   11篇
  2010年   4篇
  2009年   3篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2000年   2篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1992年   1篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有50条查询结果,搜索用时 15 毫秒
1.
2.
Arctic seas have warmed and sea ice has retreated. This has resulted in range contraction and population declines in some species, but it could potentially be a boon for others. Great Cormorants Phalacrocorax carbo have a partially wettable plumage and seem poorly suited to foraging in Arctic waters. We show that rates of population change of Cormorant colonies around Disko Bay, Greenland, are positively correlated with sea surface temperature, suggesting that they may benefit from a warming Arctic. However, although Cormorant populations may increase in response to Arctic warming, the extent of expansion of their winter range may ultimately be limited by other factors, such as sensory constraints on foraging behaviour during long Arctic nights.  相似文献   
3.
Calanus finmarchicus is a key‐structural species of the North Atlantic polar biome. The species plays an important trophic role in subpolar and polar ecosystems as a grazer of phytoplankton and as a prey for higher trophic levels such as the larval stages of many fish species. Here, we used a recently developed ecological niche model to assess the ecological niche (sensu Hutchinson) of C. finmarchicus and characterize its spatial distribution. This model explained about 65% of the total variance of the observed spatial distribution inferred from an independent dataset (data of the continuous plankton recorder survey). Comparisons with other types of models (structured population and ecophysiological models) revealed a clear similarity between modeled spatial distributions at the scale of the North Atlantic. Contemporary models coupled with future projections indicated a progressive reduction of the spatial habitat of the species at the southern edge and a more pronounced one in the Georges Bank, the Scotian Shelf and the North Sea and a potential increase in abundance at the northern edge of its spatial distribution, especially in the Barents Sea. These major changes will probably lead to a major alteration of the trophodynamics of North Atlantic ecosystems affecting the trophodynamics and the biological carbon pump.  相似文献   
4.

Background

Since the first fungal genome sequences became available, investigators have been employing comparative genomics to understand how fungi have evolved to occupy diverse ecological niches. The secretome, i.e. the entirety of all proteins secreted by an organism, is of particular importance, as by these proteins fungi acquire nutrients and communicate with their surroundings.

Results

It is generally assumed that fungi with similar nutritional lifestyles have similar secretome compositions. In this study, we test this hypothesis by annotating and comparing the soluble secretomes, defined as the sets of proteins containing classical signal peptides but lacking transmembrane domains of fungi representing a broad diversity of nutritional lifestyles. Secretome size correlates with phylogeny and to a lesser extent with lifestyle. Plant pathogens and saprophytes have larger secretomes than animal pathogens. Small secreted cysteine-rich proteins (SSCPs), which may comprise many effectors important for the interaction of plant pathogens with their hosts, are defined here to have a mature length of ≤ 300 aa residues, at least four cysteines, and a total cysteine content of ≥5%. SSCPs are found enriched in the secretomes of the Pezizomycotina and Basidiomycota in comparison to Saccharomycotina. Relative SSCP content is noticeably higher in plant pathogens than in animal pathogens, while saprophytes were in between and closer to plant pathogens. Expansions and contractions of gene families and in the number of occurrences of functional domains are largely lineage specific, e.g. contraction of glycoside hydrolases in Saccharomycotina, and are only weakly correlated with lifestyle. However, within a given lifestyle a few general trends exist, such as the expansion of secreted family M14 metallopeptidases and chitin-binding proteins in plant pathogenic Pezizomycotina.

Conclusions

While the secretomes of fungi with similar lifestyles share certain characteristics, the expansion and contraction of gene families is largely lineage specific, and not shared among all fungi of a given lifestyle.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-722) contains supplementary material, which is available to authorized users.  相似文献   
5.
This minireview explores the environmental bioremediation mediated by genetically engineered (GE) bacteria and it also highlights the limitations and challenges associated with the release of engineered bacteria in field conditions. Application of GE bacteria based remediation of various heavy metal pollutants is in the forefront due to eco-friendly and lesser health hazards compared to physico-chemical based strategies, which are less eco-friendly and hazardous to human health. A combination of microbiological and ecological knowledge, biochemical mechanisms and field engineering designs would be an essential element for successful in situ bioremediation of heavy metal contaminated sites using engineered bacteria. Critical research questions pertaining to the development and implementation of GE bacteria for enhanced bioremediation have been identified and poised for possible future research. Genetic engineering of indigenous microflora, well adapted to local environmental conditions, may offer more efficient bioremediation of contaminated sites and making the bioremediation more viable and eco-friendly technology. However, many challenges are to be addressed concerning the release of genetically engineered bacteria in field conditions. There are possible risks associated with the use of GE bacteria in field condition, with particular emphasis on ways in which molecular genetics could contribute to the risk mitigation. Both environmental as well as public health concerns need to be addressed by the molecular biologists. Although bioremediation of heavy metals by using the genetically engineered bacteria has been extensively reviewed in the past also, but the bio-safety assessment and factors of genetic pollution have been never the less ignored.  相似文献   
6.
7.
We have developed a novel and versatile three-dimensional cellular automaton model of brain tumor growth. We show that macroscopic tumor behavior can be realistically modeled using microscopic parameters. Using only four parameters, this model simulates Gompertzian growth for a tumor growing over nearly three orders of magnitude in radius. It also predicts the composition and dynamics of the tumor at selected time points in agreement with medical literature. We also demonstrate the flexibility of the model by showing the emergence, and eventual dominance, of a second tumor clone with a different genotype. The model incorporates several important and novel features, both in the rules governing the model and in the underlying structure of the model. Among these are a new definition of how to model proliferative and non-proliferative cells, an isotropic lattice, and an adaptive grid lattice.  相似文献   
8.
Summary Somatic hybridization experiments in Citrus that involve the fusion of protoplasts of one parent isolated from either nucellus-derived embryogenic callus or suspension cultures with leaf-derived protoplasts of a second parent, often result in the regeneration of diploid plants that phenotypically resemble the leaf parent. In this study, plants of this type regenerated following somatic fusions of the following three parental combinations were analyzed to determine their genetic origin (nuclear and organelle): (embryogenic parent listed first, leaf parent second) (1) calamondin (C. microcarpa Bunge) + Keen sour orange (C. aurantium L.), (2) Cleopatra mandarin (C. reticulata Blanco) + sour orange, and (3) Valencia sweet orange (C. sinensis (L.) Osbeck) + Femminello lemon (C. limon (L.) Burm. f.). Isozyme analyses of PGI, PGM, GOT, and IDH zymograms of putative cybrid plants, along with RFLP analyses using a nuclear genome-specific probe showed that these plants contained the nucleus of the leaf parent. RFLP analyses using mtDNA-specific probes showed that these plants contained the mitochondrial genome of the embryogenic callus donor, thereby confirming cybridization. RFLP analyses using cpDNA-specific probes revealed that the cybrid plants contained the chloroplast genome of either one or the other parent. These results support previous reports indicating that acquisition of the mitochondria of embryogenic protoplasts by leaf protoplasts is a prerequisite for recovering plants with the leaf parent phenotype via somatic embryogenesis following somatic fusion.Abbreviations cp chloroplast - GOT glutamateoxaloacetate transaminase - IDH isocitrate dehydrogenase - mt mitochondria - PEG polyethylene glycol - PGI phosphoglucose isomerase - PGM phosphoglucomutase - RFLP restriction fragment length polymorphism Florida Agricultural Experiment Station Journal Series No. R-04631.  相似文献   
9.
10.
Role of the tubulin-microtubule system in lymphocyte activation   总被引:3,自引:2,他引:1       下载免费PDF全文
The role of the tubulin-microtubule system was examined in human peripheral blood leukocytes after activation with phytohemagglutinin (PHA). Soluble tubulin and microtubules were measured with a [(3)H]colchicine-binding assay. It was found that the tubulin content of PHA-activated lymphocytes was consistently increased relative to total protein content after 36 h of culture. There was no increase in the proportion of total tubulin synthesis which was present as microtubules at 36 h. Nevertheless, as a result of increased tubulin synthesis, there was a two-to three-fold increase in total microtubular mass. Colchicine, which disrupts microtubles, was used to assess the role of microtubule assembly in the sequence of events which follow lymphocyte activation, namely lymphokine release, protein synthesis, RNA synthesis, and DNA synthesis. Colchicine consistently inhibited DNA synthesis but did not inhibit release of the lymphokine, osteoclast activating factor (OAF). Protein and RNA syntheses were inhibited much less than DNA synthesis. The fact that some effects of PHA on lymphocytes appear to require intact microtubules and at least one does not suggest that the microtubule dependent step in PHA-stimulated lymphocyte activation occurs at a stage after propagation of the signal from the membrane to the cell interior.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号