首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objectives of this work were to examine the past, current and potential influence of global climate change on the spatial distribution of some commercially exploited fish and to evaluate a recently proposed new ecological niche model (ENM) called nonparametric probabilistic ecological niche model (NPPEN). This new technique is based on a modified version of the test called Multiple Response Permutation Procedure (MRPP) using the generalized Mahalanobis distance. The technique was applied in the extratropical regions of the North Atlantic Ocean on eight commercially exploited fish species using three environmental parameters (sea surface temperature, bathymetry and sea surface salinity). The numerical procedure and the model allowed a better characterization of the niche (sensu Hutchinson) and an improved modelling of the spatial distribution of the species. Furthermore, the technique appeared to be robust to incomplete or bimodal training sets. Despite some potential limitations related to the choice of the climatic scenarios (A2 and B2), the type of physical model (ECHAM 4) and the absence of consideration of biotic interactions, modelled changes in species distribution explained some current observed shifts in dominance that occurred in the North Atlantic sector, and particularly in the North Sea. Although projected changes suggest a poleward movement of species, our results indicate that some species may not be able to track their climatic envelope and that climate change may have a prominent influence on fish distribution during this century. The phenomenon is likely to trigger locally major changes in the dominance of species with likely implications for socio‐economical systems. In this way, ENMs might provide a new management tool against which changes in the resource might be better anticipated.  相似文献   

2.
The boreal Northeast Atlantic is strongly affected by current climate change, and large shifts in abundance and distribution of many organisms have been observed, including the dominant copepod Calanus finmarchicus, which supports the grazing food web and thus many fish populations. At the same time, large‐scale declines have been observed in many piscivorous seabirds, which depend on abundant small pelagic fish. Here, we combine predictions from a niche model of C. finmarchicus with long‐term data on seabird breeding success to link trophic levels. The niche model shows that environmental suitability for C. finmarchicus has declined in southern areas with large breeding seabird populations (e.g. the North Sea), and predicts that this decline is likely to spread northwards during the 21st century to affect populations in Iceland and the Faroes. In a North Sea colony, breeding success of three common piscivorous seabird species [black‐legged kittiwake (Rissa tridactyla), common guillemot (Uria aalge) and Atlantic puffin (Fratercula arctica)] was strongly positively correlated with local environmental suitability for C. finmarchicus, whereas this was not the case at a more northerly colony in west Norway. Large seabird populations seem only to occur where C. finmarchicus is abundant, and northward distributional shifts of common boreal seabirds are therefore expected over the coming decades. Whether or not population size can be maintained depends on the dispersal ability and inclination of these colonial breeders, and on the carrying capacity of more northerly areas in a warmer climate.  相似文献   

3.

Premise

Researchers often use ecological niche models to predict where species might establish and persist under future or novel climate conditions. However, these predictive methods assume species have stable niches across time and space. Furthermore, ignoring the time of occurrence data can obscure important information about species reproduction and ultimately fitness. Here, we assess compare ecological niche models generated from full-year averages to seasonal models.

Methods

In this study, we generate full-year and monthly ecological niche models for Capsella bursa-pastoris in Europe and North America to see if we can detect changes in the seasonal niche of the species after long-distance dispersal.

Results

We find full-year ecological niche models have low transferability across continents and there are continental differences in the climate conditions that influence the distribution of C. bursa-pastoris. Monthly models have greater predictive accuracy than full-year models in cooler seasons, but no monthly models can predict North American summer occurrences very well.

Conclusions

The relative predictive ability of European monthly models compared to North American monthly models suggests a change in the seasonal timing between the native range to the non-native range. These results highlight the utility of ecological niche models at finer temporal scales in predicting species distributions and unmasking subtle patterns of evolution.  相似文献   

4.
While a few North Atlantic cod stocks are stable, none have increased and many have declined in recent years. Although overfishing is the main cause of most observed declines, this study shows that in some regions, climate by its influence on plankton may exert a strong control on cod stocks, complicating the management of this species that often assumes a constant carrying capacity. First, we investigate the likely drivers of changes in the cod stock in the North Sea by evaluating the potential relationships between climate, plankton and cod. We do this by deriving a Plankton Index that reflects the quality and quantity of plankton food available for larval cod. We show that this Plankton Index explains 46.24% of the total variance in cod recruitment and 68.89% of the variance in total cod biomass. Because the effects of climate act predominantly through plankton during the larval stage of cod development, our results indicate a pronounced sensitivity of cod stocks to climate at the warmer, southern edge of their distribution, for example in the North Sea. Our analyses also reveal for the first time, that at a large basin scale, the abundance of Calanus finmarchicus is associated with a high probability of cod occurrence, whereas the genus Pseudocalanus appears less important. Ecosystem‐based fisheries management (EBFM) generally considers the effect of fishing on the ecosystem and not the effect of climate‐induced changes in the ecosystem state for the living resources. These results suggest that EBFM must consider the position of a stock within its ecological niche, the direct effects of climate and the influence of climate on the trophodynamics of the ecosystem.  相似文献   

5.
Changes in species’ trophic niches due to habitat degradation can affect intra‐ and interspecific competition, with implications for biodiversity persistence. Difficulties of measuring species’ interactions in the field limit our comprehension of competition outcomes along disturbance gradients. Thus, information on how habitat degradation can destabilize food webs is scarce, hindering predictions regarding responses of multispecies systems to environmental changes. Seagrass ecosystems are undergoing degradation. We address effects of Posidonia oceanica coverage reduction on the trophic organization of a macroinvertebrate community in the Tyrrhenian Sea (Italy), hypothesizing increased trophic generalism, niche overlap among species and thus competition and decreased community stability due to degraded conditions. Census data, isotopic analysis, and Bayesian mixing models were used to quantify the trophic niches of three abundant invertebrate species, and intra‐ and interspecific isotopic and resource‐use similarity across locations differing in seagrass coverage. This allowed the computation of (1) competition strength, with respect to each other and remaining less abundant species and (2) habitat carrying capacity. To explore effects of the spatial scale on the interactions, we considered both individual locations and the entire study area (“‘meadow scale”). We observed that community stability and habitat carrying capacity decreased as P. oceanica coverage declined, whereas niche width, similarity of resource use and interspecific competition strength between species increased. Competition was stronger, and stability lower, at the meadow scale than at the location scale. Indirect effects of competition and the spatial compartmentalization of species interactions increased stability. Results emphasized the importance of trophic niche modifications for understanding effects of habitat loss on biodiversity persistence. Calculation of competition coefficients based on isotopic distances is a promising tool for describing competitive interactions in real communities, potentially extendible to any subset of ecological niche axes for which specimens’ positions and pairwise distances can be obtained.  相似文献   

6.
Although many studies have debated the theoretical links between physiology, ecological niches and species distribution, few studies have provided evidence for a tight empirical coupling between these concepts at a macroecological scale. We used an ecophysiological model to assess the fundamental niche of a key-structural marine species. We found a close relationship between its fundamental and realized niche. The relationship remains constant at both biogeographical and decadal scales, showing that changes in environmental forcing propagate from the physiological to the macroecological level. A substantial shift in the spatial distribution is detected in the North Atlantic and projections of range shift using IPCC scenarios suggest a poleward movement of the species of one degree of latitude per decade for the 21st century. The shift in the spatial distribution of this species reveals a pronounced alteration of polar pelagic ecosystems with likely implications for lower and upper trophic levels and some biogeochemical cycles.  相似文献   

7.
Phenological, biogeographic and community shifts are among the reported responses of marine ecosystems and their species to climate change. However, despite both the profound consequences for ecosystem functioning and services, our understanding of the root causes underlying these biological changes remains rudimentary. Here, we show that a significant proportion of the responses of species and communities to climate change are deterministic at some emergent spatio-temporal scales, enabling testable predictions and more accurate projections of future changes. We propose a theory based on the concept of the ecological niche to connect phenological, biogeographic and long-term community shifts. The theory explains approximately 70% of the phenological and biogeographic shifts of a key zooplankton Calanus finmarchicus in the North Atlantic and approximately 56% of the long-term shifts in copepods observed in the North Sea during the period 1958–2009.  相似文献   

8.
Sister species that diverged in allopatry in similar environments are expected to exhibit niche conservatism. Using ecological niche modeling and a multivariate analysis of climate and habitat data, I test the hypothesis that the Bicknell's Thrush (Catharus bicknelli) and Gray‐cheeked Thrush (C. mimimus), sister species that breed in the North American boreal forest, show niche conservatism. Three tree species that are important components of breeding territories of both thrush species were combined with climatic variables to create niche models consisting of abiotic and biotic components. Abiotic‐only, abiotic+biotic, and biotic‐only models were evaluated using the area under the curve (AUC) criterion. Abiotic+biotic models had higher AUC scores and did not over‐project thrush distributions compared to abiotic‐only or biotic‐only models. From the abiotic+biotic models, I tested for niche conservatism or divergence by accounting for the differences in the availability of niche components by calculating (1) niche overlap from ecological niche models and (2) mean niche differences of environmental values at occurrence points. Niche background similarity tests revealed significant niche divergence in 10 of 12 comparisons, and multivariate tests revealed niche divergence along 2 of 3 niche axes. The Bicknell's Thrush breeds in warmer and wetter regions with a high abundance of balsam fir (Abies balsamea), whereas Gray‐cheeked Thrush often co‐occurs with black spruce (Picea mariana). Niche divergence, rather than conservatism, was the predominant pattern for these species, suggesting that ecological divergence has played a role in the speciation of the Bicknell's Thrush and Gray‐cheeked Thrush. Furthermore, because niche models were improved by the incorporation of biotic variables, this study validates the inclusion of relevant biotic factors in ecological niche modeling to increase model accuracy.  相似文献   

9.
An ecological niche has been defined as an n‐dimensional hypervolume formed by conditions and resources that species need to survive, grow, and reproduce. In practice, such niche dimensions are measurable and describe how species share resources, which has been thought to be a crucial mechanism for coexistence and a major driver of broad biodiversity patterns. Here, we investigate resource partitioning and trophic interactions of three sympatric, phylogenetically related and morphologically similar species of thrushes (Turdus spp.). Based on one year of data collected in southern Brazil, we investigated niche partitioning using three approaches: diet and trophic niche assessed by fecal analysis, diet and niche estimated by stable isotopes in blood and mixing models, and bipartite network analysis derived from direct diet and mixing model outputs. Approaches revealed that the three sympatric thrushes are generalists that feed on similar diets, demonstrating high niche overlap. Fruits from C3 plants were one of the most important food items in their networks, with wide links connecting the three thrush species. Turdus amaurochalinus and T. albicollis had the greatest trophic and isotopic niche overlap, with 90% and 20% overlap, respectively. There was partitioning of key resources between these two species, with a shared preference for fig tree fruits—Ficus cestrifolia (T. amaurochalinus PSIRI% = 11.3 and T. albicollis = 11.5), which was not present in the diet of T. rufiventris. Results added a new approach to the network analysis based on values from the stable isotope mixing models, allowing comparisons between traditional dietary analysis and diet inferred by isotopic mixing models, which reflects food items effectively assimilated in consumer tissues. Both are visualized in bipartite networks and show food‐consumers link strengths. This approach could be useful to other studies using stable isotopes coupled to network analysis, particularly useful in sympatric species with similar niches.  相似文献   

10.
Furcraea foetida (Asparagaceae) is a native plant of Central America and northern South America but there is no information about its country of origin. The species was introduced into Brazil and is now considered invasive, particularly in coastal ecosystems. To date, nothing is known about the environmental factors that constrain its distribution and there is only inconclusive information about its location of origin. We used reciprocal distribution models (RDM) to assess invasion risk of F. foetida across Brazil and to identify source regions in its native range. We also tested the niche conservatism hypothesis using Principal Components Analyses and statistical tests of niche equivalency and similarity between its native and invaded ranges. For RDM analysis, we built two models using maximum entropy, one using records in the native range to predict the invaded distribution (forward‐Ecological Niche Model or forward‐ENM) and one using records in the invaded range to predict the native distribution (reverse‐ENM). Forward‐ENM indicated invasion risk in the Cerrado region and the innermost region of the Atlantic Forest, however, failed to predict the current occurrence in southern Brazil. Reverse‐ENM supported an existing hypothesis that F. foetida originated in the Orinoco river basin, Amazon basin and Caribbean islands. Prediction errors in the RDM and multivariate analysis indicated that the species expanded its realized niche in Brazil. The niche similarity test further suggested that the niche differences are because of differences in habitat availability between the two ranges, not because of evolutionary changes. We hypothesize that physiological pre‐adaptation (especially, the crassulacean acid metabolism), human‐driven propagule pressure and high competitive ability are the main factors determining the current spatial distribution of the species in Brazil. Our study highlights the need to include F. foetida in plant invasion monitoring programs, especially in priority conservation areas where the species has still not been introduced.  相似文献   

11.
舟山长白海域主要游泳动物生态位及其分化研究   总被引:4,自引:0,他引:4  
基于2016年10月(秋季)和2017年4月(春季)舟山长白海域的渔业资源调查数据,运用生态位宽度、生态位重叠及冗余分析等方法,研究了主要游泳动物的生态位,种间生态关系及生态位分化。结果显示:春、秋季主要游泳动物分别11种与8种,两季生态位宽度值差异均较大,其中春季广生态位种、中生态位种均为3种,而秋季均为2种,窄生态位种分别为5种与4种。相对重要性指数(IRI)与生态位宽度值(Bi)之间呈显著正相关。生态位重叠程度不均衡,秋季主要游泳动物的生态位重叠程度较高,Oik > 0.6的种对数占总种对数的42.86%;春季的重叠程度较低,仅占总种对数的21.82%。RDA分析得出温度、盐度为影响主要游泳动物分布的直接因素,而溶解氧、悬浮物和pH等则为重要因素,主要游泳动物在这些资源维上存在生态分化现象。综上,分布在毗邻杭州湾口且位于著名的岱衢洋的主要游泳动物种类总体营养级较低却生态宽度值较大,大黄鱼(Larimichthys crocea)、黄姑鱼(Nibea albiflora)等一些传统的高营养级、典型特色经济种类却沦为生态位宽度极小的一般种或少有种,群落种类显著减少,资源量下降,群落结构与功能退化,稳定性下降。因此,加强游泳动物资源修复、保护与管理十分迫切且具有重要意义。  相似文献   

12.
One of the major challenges to understanding population changes in ecology for assessment purposes is the difficulty in evaluating the suitability of an area for a given species. Here we used a new simple approach able to faithfully predict through time the abundance of two key zooplanktonic species by focusing on the relationship between the species’ environmental preferences and their observed abundances. The approach is applied to the marine copepods Calanus finmarchicus and C. helgolandicus as a case study characterising the multidecadal dynamics of the North Sea ecosystem. We removed all North Sea data from the Continuous Plankton Recorder (CPR) dataset and described for both species a simplified ecological niche using Sea Surface Temperature (SST) and CPR Phytoplankton Colour Index (PCI). We then modelled the dynamics of each species by associating the North Sea’s environmental parameters to the species’ ecological niches, thus creating a method to assess the suitability of this area. By using both C. finmarchicus and C. helgolandicus as indicators, the procedure reproduces the documented switches from cold to warm temperate states observed in the North Sea.  相似文献   

13.
昆承湖优势种鱼类时空-营养生态位   总被引:1,自引:0,他引:1  
陈亚东  任泷  徐跑  凡迎春  徐东坡 《生态学报》2023,43(4):1655-1663
为了解昆承湖优势种鱼类资源利用情况,首先利用生态位方法计算了时间、空间及营养三个资源维度的生态位宽度及重叠值,然后根据时空-营养生态位宽度值将优势种鱼类划分为广位种、中位种和窄位种,最后讨论了生态位宽度及重叠的可能原因。结果显示:刀鲚Coilia nasus、蒙古鲌Chanodichthys mongolicus、似鱎Toxabramis swinhonis、似鳊Pseudobrama simoni、鳙Hypophthalmichthys nobilis、鲢Hypophthalmichthys molitrix、花鱼骨Hemibarbus maculatus、似刺鳊鮈Paracanthobrama guichenoti、大鳍鱊Acheilognathus macropterus和鲫Carassius auratus为优势种。在时间维度:鲢的生态位宽度最大,似鳊的最小;生态位重叠具有显著意义的有24对,占总的53.33%。在空间维度,似刺鳊鮈最大,鲢最小;生态位重叠具有显著意义的有36对,占总的80%。在营养维度,最大的为鲫,最小的为花鱼骨;生态位重叠具有显著意义的有8对,占17.78%...  相似文献   

14.
Genetic diversity analyses, coupled with ecological niche modelling (ENM) of species with a restricted distribution, may provide valuable information for understanding diversification patterns in endangered areas. We analyzed the genetic diversity of Recordia reitzii, a tree restricted to the threatened and highly fragmented Brazilian Atlantic forest, using three intergenic cpDNA spacers and ten microsatellite (SSR) loci. To assess the historical processes that may have influenced the distribution of extant R. reitzii populations, the current potential distributions of R. reitzii and Recordia boliviana, a closely related species, were modelled and projected onto the Last Glacial Maximum (LGM) and Last Interglacial (LIG) periods. Niche divergence was quantified between these two. The cpDNA and SSR data showed a north–south pattern of the diversity distribution and structured populations, suggesting that gene flow is probably limited. According to our data, R. reitzii exhibits low genetic diversity, which may be a result of a founder or distribution‐reduction effect, narrow distribution or small population size. The ecological niche models showed a wider palaeodistribution during the LIG and a retraction during the LGM for both species. Tests of niche divergence and conservatism indicated that bioclimatic factors might have influenced the diversification of these Recordia species. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 176 , 332–348.  相似文献   

15.
Aim We explore the impact of calibrating ecological niche models (ENMs) using (1) native range (NR) data versus (2) entire range (ER) data (native and invasive) on projections of current and future distributions of three Hieracium species. Location H. aurantiacum, H. murorum and H. pilosella are native to Europe and invasive in Australia, New Zealand and North America. Methods Differences among the native and invasive realized climatic niches of each species were quantified. Eight ENMs in BIOMOD were calibrated with (1) NR and (2) ER data. Current European, North American and Australian distributions were projected. Future Australian distributions were modelled using four climate change scenarios for 2030. Results The invasive climatic niche of H. murorum is primarily a subset of that expressed in its native range. Invasive populations of H. aurantiacum and H. pilosella occupy different climatic niches to those realized in their native ranges. Furthermore, geographically separate invasive populations of these two species have distinct climatic niches. ENMs calibrated on the realized niche of native regions projected smaller distributions than models incorporating data from species’ entire ranges, and failed to correctly predict many known invasive populations. Under future climate scenarios, projected distributions decreased by similar percentages, regardless of the data used to calibrate ENMs; however, the overall sizes of projected distributions varied substantially. Main conclusions This study provides quantitative evidence that invasive populations of Hieracium species can occur in areas with different climatic conditions than experienced in their native ranges. For these, and similar species, calibration of ENMs based on NR data only will misrepresent their potential invasive distribution. These errors will propagate when estimating climate change impacts. Thus, incorporating data from species’ entire distributions may result in a more thorough assessment of current and future ranges, and provides a closer approximation of the elusive fundamental niche.  相似文献   

16.
Aim Increasing our understanding of the effects of the Last Glacial Maximum (LGM) and determining the location of refugia requires studies on widely distributed species with dense sampling of populations. We have reconstructed the biogeographic history of Clitarchus hookeri (White), a widespread species of New Zealand stick insect that exhibits geographic parthenogenesis, using phylogeographic analysis and ecological niche modelling. Location New Zealand. Methods We used DNA sequence data from the mitochondrial cytochrome c oxidase subunit I gene to reconstruct phylogenetic relationships among haplotypes from C. hookeri and two undescribed Clitarchus species. We also used distribution data from our own field surveys and museum records to reconstruct the geographic distribution of C. hookeri during the present and the LGM, using ecological niche modelling. Results The ecological niche models showed that the geographic distribution of C. hookeri has expanded dramatically since the LGM. Our model predicted large areas of suitable LGM habitat in upper North Island, and small patches along the east coast of South Island. The phylogeographic analysis shows that populations in the northern half of North Island contain much higher levels of genetic variation than those from southern North Island and South Island, and is congruent with the ecological niche model. The distribution of bisexual populations is also non-random, with males completely absent from South Island and very rare in southern North Island. Main conclusions During the LGM C. hookeri was most likely restricted to several refugia in upper North Island and one or more smaller refugia along the east coast of South Island. The unisexual populations predominate in post-glacial landscapes and are clearly favoured in the recolonization of such areas. Our study exemplifies the utility of integrating ecological niche modelling and phylogeographic analysis.  相似文献   

17.
Recent integration of ecological niche models in phylogeographic studies is improving our understanding of the processes structuring genetic variation across landscapes. Previous studies on the amphibian Bufotes boulengeri boulengeri uncovered a surprisingly weak intraspecific differentiation across the Maghreb region. We widely sampled this species from Morocco to Egypt and sequenced one nuclear and three mitochondrial (mtDNA) genes to determine the level of genetic variability across its geographic range. We evaluated these data with ecological niche modeling to reveal its evolutionary history in response to climate change during the Quaternary. Our results highlight some mtDNA phylogeographic structure within this species, with one haplogroup endemic to coastal Morocco, and one haplogroup widely distributed throughout North Africa. No or little genetic differentiation is observed between isolated populations from the Hoggar Mountains, the Sabha district and the islands of Kerkennah and Lampedusa, compared to others populations. This can be explained by the expansion of the distribution range of B. b. boulengeri during glacial periods. This might have facilitated the species’ dispersal and subsequent gene flow between most North African localities.  相似文献   

18.
Ecological niche theory predicts that coexistence is facilitated by resource partitioning mechanisms that are influenced by abiotic and biotic interactions. Alternative hypotheses suggest that under certain conditions, species may become phenotypically similar and functionally equivalent, which invokes the possibility of other mechanisms, such as habitat filtering processes. To test these hypotheses, we examined the coexistence of the giant redfin Pseudobarbus skeltoni, a newly described freshwater fish, together with its congener Pseudobabus burchelli and an anabantid Sandelia capensis by assessing their scenopoetic and bionomic patterns. We found high habitat and isotope niche overlaps between the two redfins, rendering niche partitioning a less plausible sole mechanism that drives their coexistence. By comparison, environment–trait relationships revealed differences in species–environment relationships, making habitat filtering and functional equivalence less likely alternatives. Based on P. skeltoni's high habitat niche overlap with other species, and its large isotope niche width, we inferred the likelihood of differential resource utilization at trophic level as an alternative mechanism that distinguished it from its congener. In comparison, its congener P. burchelli appeared to have a relatively small trophic niche, suggesting that its trophic niche was more conserved despite being the most abundant species. By contrast, S. capensis was distinguished by occupying a higher trophic position and by having a trophic niche that had a low probability of overlapping onto those of redfins. Therefore, trophic niche partitioning appeared to influence the coexistence between S. capensis and redfins. This study suggests that coexistence of these fishes appears to be promoted by their differences in niche adaptation mechanisms that are probably shaped by historic evolutionary and ecological processes.  相似文献   

19.
To determine what shapes the distributions of cryptic species, we aimed to unravel ecological niches and geographical distributions of three cryptic bat species complexes in Iberia, Plecotus auritus/begognae, Myotis mystacinus/alcathoe and Eptesicus serotinus/isabellinus (with 44, 69, 66, 27, 121 and 216 records, respectively), considering ecological interactions and biogeographical patterns. Species distribution models (SDMs) were built using a presence‐only technique (Maxent), incorporating genetically identified species records with environmental variables (climate, habitat, topography). The most relevant variables for each species’ distribution and respective response curves were then determined. SDMs for each species were overlapped to assess the contact zones within each complex. Niche analyses were performed using niche metrics and spatial principal component analyses to study niche overlap and breadth. The Plecotus complex showed a parapatric distribution, although having similar biogeographical affinities (Eurosiberian), possibly explained by competitive exclusion. The Myotis complex also showed Eurosiberian affinities, with high overlap between niches and distribution, suggesting resource partitioning between species. Finally, E. serotinus was associated with Eurosiberian areas, while E. isabellinus occurred in Mediterranean areas, suggesting possible competition in their restricted contact zone. This study highlights the relevance of considering potential ecological interactions between similarly ecological species when assessing species distributions. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112 ,150–162.  相似文献   

20.
In this study, we analysed the processes resulting in the origin of two endemic sister species of bumblebees in the Brazilian Atlantic Forest. We studied the historical distribution pattern of Bombus bahiensis, which is restricted to small fragments in eastern Brazil and the phylogeographic pattern and historical demography of B. brasiliensis, which is widely distributed in southern and south-eastern Brazil and neighbouring regions of Uruguay, Paraguay, and Argentina. We used ecological niche models, niche analyses, and genetic and distribution data (i) to test the role of niche differentiation on the divergence between the two species, (ii) to find potential distribution areas for the most restricted B. bahiensis, and (iii) to evaluate the conservation status of both species. Our results showed that B. brasiliensis populations are able to disperse across mosaics of anthropogenic and preserved areas and exhibit low levels of spatial genetic structure. Otherwise, B. bahiensis presented a restricted distribution range and likely a lower diversity, where it is suffering with an increasing habitat loss. The climatic oscillations of the Pleistocene influenced the population structure of both species in different ways, probably due to differences in their effective population sizes, physiology and past demographic fluctuations. Specifically, while B. brasiliensis expanded its distribution range in the last 500,?000?years throughout most of the Atlantic Forest, B. bahiensis remained restricted to a small rainforest area between southern Bahia and northern Espírito Santo states in Brazil. In its southern distribution, in the state of Espírito Santo, B. bahiensis is currently very rare or extinct. Currently, the adjacent ranges of Bombus brasiliensis and B. bahiensis do not overlap and our results indicate that these species may have further diversified through a reinforcement process associated to niche specialization and differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号