首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
随着工业化进程不断加快,重金属污染日益加剧,尤其是水体的重金属污染,已严重威胁人类健康,迫切需要进行有效的污染修复。相比传统物理和化学修复,生物修复具有绿色环保和可持续性的特点。因为微生物生长繁殖迅速、生物被膜具有动态可调节和环境适应性好等特点,使其能更好耐受胁迫环境,在环境修复中有重要作用。合成生物学改造微生物及生物被膜用于环境污染生物修复近年兴起,成为未来重要的发展方向。主要概述了重金属污染的微生物修复机理和方法,结合可编程微生物被膜的最新研究成果,重点介绍了合成生物学改造微生物及生物被膜的分类与功能应用,以及在重金属铅、汞和镉等污染修复中的研究进展,讨论了重金属污染生物修复的发展方向。  相似文献   

2.
The threat of heavy metal pollution to public health and wildlife has led to an increased interest in developing systems that can remove or neutralise its toxic effects in soil, sediments and wastewater. Unlike organic contaminants, which can be degraded to harmless chemical species, heavy metals cannot be destroyed. Remediating the pollution they cause can therefore only be envisioned as their immobilisation in a non-bioavailable form, or their re-speciation into less toxic forms. While these approaches do not solve the problem altogether, they do help to protect afflicted sites from noxious effects and isolate the contaminants as a contained and sometimes recyclable residue. This review outlines the most important bacterial phenotypes and properties that are (or could be) instrumental in heavy metal bioremediation, along with what is known of their genetic and biochemical background. A variety of instances are discussed in which valuable properties already present in certain strains can be combined or improved through state-of-the-art genetic engineering. In other cases, knowledge of metal-related reactions catalysed by some bacteria allows optimisation of the desired process by altering the physicochemical conditions of the contaminated area. The combination of genetic engineering of the bacterial catalysts with judicious eco-engineering of the polluted sites will be of paramount importance in future bioremediation strategies.  相似文献   

3.
4.
Bioremediation, involving bioaugmentation and/or biostimulation, being an economical and eco-friendly approach, has emerged as the most advantageous soil and water clean-up technique for contaminated sites containing heavy metals and/or organic pollutants. Addition of pre-grown microbial cultures to enhance the degradation of unwanted compounds (bioaugmentation) and/or injection of nutrients and other supplementary components to the native microbial population to induce propagation at a hastened rate (biostimulation), are the most common approaches for in situ bioremediation of accidental spills and chronically contaminated sites worldwide. However, many factors like strain selection, microbial ecology, type of contaminant, environmental constraints, as well as procedures of culture introduction, may lead to their failure. These drawbacks, along with fragmented literature, have opened a gap between laboratory trials and on-field application. The present review discusses the effectiveness as well as the limitations of bioaugmentation and biostimulation processes. A summary of experimental studies both in confined systems under controlled conditions and of real case studies in the field is presented. A comparative account between the two techniques and also the current scenario worldwide for in situ biotreatment using bioaugmentation and biostimulation, are addressed.  相似文献   

5.
This paper presents a critical review of the literature on the application of genetically engineered microorganisms (GEMs) in bioremediation. The important aspects of using GEMs in bioremediation, such as development of novel strains with desirable properties through pathway construction and the modification of enzyme specificity and affinity, are discussed in detail. Particular attention is given to the genetic engineering of bacteria using bacterial hemoglobin (VHb) for the treatment of aromatic organic compounds under hypoxic conditions. The application of VHb technology may advance treatment of contaminated sites, where oxygen availability limits the growth of aerobic bioremediating bacteria, as well as the functioning of oxygenases required for mineralization of many organic pollutants. Despite the many advantages of GEMs, there are still concerns that their introduction into polluted sites to enhance bioremediation may have adverse environmental effects, such as gene transfer. The extent of horizontal gene transfer from GEMs in the environment, compared to that of native organisms including benefits regarding bacterial bioremediation that may occur as a result of such transfer, is discussed. Recent advances in tracking methods and containment strategies for GEMs, including several biological systems that have been developed to detect the fate of GEMs in the environment, are also summarized in this review. Critical research questions pertaining to the development and implementation of GEMs for enhanced bioremediation have been identified and posed for possible future research.  相似文献   

6.
随着人类活动的增加,对有机物和重金属的应用越来越广泛,同时造成的环境污染程度越来越严重.综述了石油、农药、表面活性剂及重金属类污染物治理中基因工程菌的构建及应用的研究进展,指出利用基因工程菌解决环境中的石油、农药、表面活性剂及重金属的污染问题已成为环境污染修复领域的研究热点,并提出基因工程菌的构建及应用过程中的难点及发展趋势.  相似文献   

7.
ABSTRACT

This paper presents a critical review of the literature on the application of genetically engineered microorganisms (GEMs) in bioremediation. The important aspects of using GEMs in bioremediation, such as development of novel strains with desirable properties through pathway construction and the modification of enzyme specificity and affinity, are discussed in detail. Particular attention is given to the genetic engineering of bacteria using bacterial hemoglobin (VHb) for the treatment of aromatic organic compounds under hypoxic conditions. The application of VHb technology may advance treatment of contaminated sites, where oxygen availability limits the growth of aerobic bioremediating bacteria, as well as the functioning of oxygenases required for mineralization of many organic pollutants. Despite the many advantages of GEMs, there are still concerns that their introduction into polluted sites to enhance bioremediation may have adverse environmental effects, such as gene transfer. The extent of horizontal gene transfer from GEMs in the environment, compared to that of native organisms including benefits regarding bacterial bioremediation that may occur as a result of such transfer, is discussed. Recent advances in tracking methods and containment strategies for GEMs, including several biological systems that have been developed to detect the fate of GEMs in the environment, are also summarized in this review. Critical research questions pertaining to the development and implementation of GEMs for enhanced bioremediation have been identified and posed for possible future research.  相似文献   

8.
A comprehensive overview of elements in bioremediation   总被引:3,自引:0,他引:3  
Sustainable development requires the development and promotion of environmental management and a constant search for green technologies to treat a wide range of aquatic and terrestrial habitats contaminated by increasing anthropogenic activities. Bioremediation is an increasingly popular alternative to conventional methods for treating waste compounds and media with the possibility to degrade contaminants using natural microbial activity mediated by different consortia of microbial strains. Many studies about bioremediation have been reported and the scientific literature has revealed the progressive emergence of various bioremediation techniques. In this review, we discuss the various in situ and ex situ bioremediation techniques and elaborate on the anaerobic digestion technology, phytoremediation, hyperaccumulation, composting and biosorption for their effectiveness in the biotreatment, stabilization and eventually overall remediation of contaminated strata and environments. The review ends with a note on the recent advances genetic engineering and nanotechnology have had in improving bioremediation. Case studies have also been extensively revisited to support the discussions on biosorption of heavy metals, gene probes used in molecular diagnostics, bioremediation studies of contaminants in vadose soils, bioremediation of oil contaminated soils, bioremediation of contaminants from mining sites, air sparging, slurry phase bioremediation, phytoremediation studies for pollutants and heavy metal hyperaccumulators, and vermicomposting.  相似文献   

9.
The display of heterologous proteins on the microbial cell surface by means of recombinant DNA biotechnologies has emerged as a novel approach for bioremediation of contaminated sites. Both bacteria and yeasts have been investigated for this purpose. Cell surface expression of specific proteins allows the engineered microorganisms to transport, bio-accumulate and/or detoxify heavy metals as well as to degrade xenobiotics. These otherwise would not be taken up and transformed by the microbial cell. This review focuses on the application of cell surface displays for the enhanced bio-accumulation of heavy metals by metal binding proteins. It also reviews the biodegradation of xenobiotics by enzymes/proteins expressed on microbial cell surfaces.  相似文献   

10.
Use of genetically modified microorganisms (GEMs) for pollution abatement has been limited because of risks associated with their release in the environment. Recent developments in the area of recombinant DNA technologies have paved the way for conceptualizing "suicidal genetically engineered microorganisms" (S-GEMS) to minimize such anticipated hazards and to achieve efficient and safer bioremediation of contaminated sites. Our strategy of designing a novel S-GEM is based on the knowledge of killer-anti-killer gene(s) that would be susceptible to programmed cell death after detoxification of any given contaminated site(s).  相似文献   

11.
Genetically engineered microorganisms (GEMs) have shown potential for bioremediation applications in soil, groundwater, and activated sludge environments, exhibiting enhanced degradative capabilities encompassing a wide range of chemical contaminants. However, the vast majority of studies pertaining to genetically engineered microbial bioremediation are supported by laboratory-based experimental data. In general, relatively few examples of GEM applications in environmental ecosystems exist. Unfortunately, the only manner in which to fully address the competence of GEMs in bioremediation efforts is through long-term field release studies. It is therefore essential that field studies be performed to acquire the requisite information for determining the overall effectiveness and risks associated with GEM introduction into natural ecosystems.  相似文献   

12.
《Biotechnology advances》2017,35(7):845-866
Elimination or mitigation of the toxic effects of chemical waste released to the environment by industrial and urban activities relies largely on the catalytic activities of microorganisms—specifically bacteria. Given their capacity to evolve rapidly, they have the biochemical power to tackle a large number of molecules mobilized from their geological repositories through human action (e.g., hydrocarbons, heavy metals) or generated through chemical synthesis (e.g., xenobiotic compounds). Whereas naturally occurring microbes already have considerable ability to remove many environmental pollutants with no external intervention, the onset of genetic engineering in the 1980s allowed the possibility of rational design of bacteria to catabolize specific compounds, which could eventually be released into the environment as bioremediation agents. The complexity of this endeavour and the lack of fundamental knowledge nonetheless led to the virtual abandonment of such a recombinant DNA-based bioremediation only a decade later. In a twist of events, the last few years have witnessed the emergence of new systemic fields (including systems and synthetic biology, and metabolic engineering) that allow revisiting the same environmental pollution challenges through fresh and far more powerful approaches. The focus on contaminated sites and chemicals has been broadened by the phenomenal problems of anthropogenic emissions of greenhouse gases and the accumulation of plastic waste on a global scale. In this article, we analyze how contemporary systemic biology is helping to take the design of bioremediation agents back to the core of environmental biotechnology. We inspect a number of recent strategies for catabolic pathway construction and optimization and we bring them together by proposing an engineering workflow.  相似文献   

13.
Today, environmental pollution is a serious problem, and bioremediation can play an important role in cleaning contaminated sites. Remediation strategies, such as chemical and physical approaches, are not enough to mitigate pollution problems because of the continuous generation of novel recalcitrant pollutants due to anthropogenic activities. Bioremediation using microbes is an eco-friendly and socially acceptable alternative to conventional remediation approaches. Many microbes with a bioremediation potential have been isolated and characterized but, in many cases, cannot completely degrade the targeted pollutant or are ineffective in situations with mixed wastes. This review envisages advances in systems biology (SB), which enables the analysis of microbial behavior at a community level under different environmental stresses. By applying a SB approach, crucial preliminary information can be obtained for metabolic engineering (ME) of microbes for their enhanced bioremediation capabilities. This review also highlights the integrated SB and ME tools and techniques for bioremediation purposes.  相似文献   

14.
金属结合蛋白基因及其在清除重金属污染中的应用   总被引:5,自引:0,他引:5  
焦芳婵  毛雪  李润植 《遗传》2002,24(1):82-86
一些微生物和植物由于对毒性金属具有独特的抗性机制,使得利用它们来清除日益严重的环境污染已发展成为一种十分有效的技术——生物修复。研究表明,不同的金属结合蛋白(如MT 和PC),在生物忍耐和降解过量重金属毒性机制中起重要作用。愈来愈多的MT 和PC基因被克隆,并已成功地应用于生物遗传转化,这些转基因生物在清除重金属污染方面已显示出潜在的应用价值。 Abstract:Heavy metal pollution has become a global environmental hazard.The use of microorganisms and plants for the decontamination of heavy metals is recognized as a low lost and high efficiency method for cleaning up metal contamination.It shows that various metal-binding proteins such as metallothioneins (MTs) or phytochelatines (PCs) play an important role in defense systems and detoxification to heavy metals in organisms.Many genes of MTs and PCs have been cloned and utilized successfully in genetically modified bacteria and plants for increasing remediation capacity.These transgenic organisms have been displayed a great potential in bioremediation and phytoremediation of heavy metals.  相似文献   

15.
AM真菌对重金属污染土壤生物修复的应用与机理   总被引:15,自引:0,他引:15  
罗巧玉  王晓娟  林双双  李媛媛  孙莉  金樑 《生态学报》2013,33(13):3898-3906
土壤重金属污染威胁人类健康和整个生态系统,而高效、低耗、安全的生物修复技术显示出了极大的应用潜力,特别是利用植物-微生物共生体增强生物修复效应的应用.丛枝菌根(Arbuscular Mycorrhizae,AM)真菌是一类广泛分布于土壤生态系统中的有益微生物,能与90%以上的陆生高等植物形成共生体.研究发现,AM真菌能够增强宿主植物对土壤中重金属胁迫的耐受性.当前,利用AM真菌开展重金属污染土壤的生物修复已经引起环境学家和生态学家的广泛关注.基于此,围绕AM真菌在重金属污染土壤生物修复作用中的最新研究进展,从物理性防御体系的形成、对植物生理代谢的调控、生化拮抗物质的产生、基因表达的调控等角度探究AM真菌在重金属污染土壤生物修复中的作用机理,以期为利用AM真菌开展重金属污染的生物修复提供理论依据,并对本领域未来的发展和应用前景进行了展望.  相似文献   

16.
A preliminary investigation was conducted to identify the presence of bacteria in fuel‐contaminated Antarctic soil that could potentially be used to bioremediate the contaminated soil at McMurdo Station and other sites in Antarctica. The ability of soil microorganisms to metabolize fuels under the extreme climatic and oligotrophic conditions of Antarctica was of concern. Bacteria were isolated from fuel‐contaminated soil on site at McMurdo Station. Bacteria from noncontaminated soil near the station were also studied for comparison. The Antarctic soil microorganisms exhibited the ability to endure cold and oligotrophic environments. Experiments also showed that bacteria from the fuel spill site were active in their contaminated environment and that acclimation to xenobiotic compounds was necessary. Application of bioremediation in the extreme environmental conditions found at McMurdo Station, Antarctica, were also considered. The possibility of altering environmental factors necessary to adequately support in situ bioremediation in this extreme climate is discussed.  相似文献   

17.
The bioremediation of polycyclic aromatic hydrocarbon (PAH)‐contaminated sites is not running smoothly, because of the lower activity of PAH‐degrading bacteria in actual bioremediation applications. The phenomenon of “viable but nonculturable” (VBNC) state may be a main limiting factor for their poor biodegradation capabilities of PAHs. Due to their abilities of entering into the VBNC state, most of bacterial populations with PAH‐degradation potential remain unculturable. Resuscitation of VBNC bacteria will enhance the degradation capability of indigenous bacteria which will eventually obtain their better capabilities in environmental bioremediation. Although evidences have been presented indicating that resuscitation of VBNC bacteria in polychlorinated biphenyl (PCB)‐contaminated environments not only significantly enhanced PCB degradation, but also obtained novel highly efficient PCB‐degrading bacteria, scanty information is available on the VBNC bacteria in PAH‐contaminated sites. VBNC bacteria, as a vast majority of potential microbial resource could be the repository of novel highly efficient PAH‐biodegraders. Therefore, studies need to be done on resuscitation of VBNC bacteria to overcome key bottlenecks in bioremediation of PAH‐contaminated sites. This mini‐review provides a new insight into the potential functions of VBNC bacteria in PAHs biodegradation.

Significance and Impact of the Study

As the vast majority microbial resource, viable but nonculturable (VBNC) bacteria, which showed their potential functions in polycyclic aromatic hydrocarbons (PAHs) biodegradation, can be of great significance in environmental bioremediation. It is therefore important to resuscitate VBNC bacteria for their better capabilities. Meanwhile, preventing the indigenous functional community from entering into the VBNC state will also maintain the high activity of PAH‐degrading bacteria in actual bioremediation applications. Undoubtedly, much more work needs to be done to reveal indigenous micro‐organisms in the VBNC state from the perspective of environmental functions.  相似文献   

18.
合成生物学是一个基于生物学和工程学原理的科学领域,其目的是重新设计和重组微生物,以优化或创建具有增强功能的新生物系统。该领域利用分子工具、系统生物学和遗传框架的重编程,从而构建合成途径以获得具有替代功能的微生物。传统上,合成生物学方法通常旨在开发具有成本效益的微生物细胞工厂进而从可再生资源中生产化学物质。然而,近年来合成生物学技术开始在环境保护中发挥着更直接的作用。本综述介绍了基因工程中的合成生物学工具,讨论了基于基因工程的微生物修复策略,强调了合成生物学技术可以通过响应特定污染物进行生物修复来保护环境。其中,规律间隔成簇短回文重复序列(Clustered Regularly Interspersed Short Palindromic Repeats,CRISPR)技术在基因工程细菌和古细菌的生物修复中得到了广泛应用,生物修复领域也出现了很多新的先进技术,包括生物膜工程、人工微生物群落的构建、基因驱动、酶和蛋白质工程等。有了这些新的技术和工具,生物修复将成为当今最好和最有效的污染物去除方式之一。  相似文献   

19.
Cupriavidus metallidurans CH34 and related strains are adapted to metal contaminated environments. A strong resistance to environmental stressors and adaptation make it ideal strains for survival in decreasing biodiversity conditions and for bioaugmentation purposes in environmental applications. The soil bacterium C. metallidurans is able to grow chemolithoautotrophically on hydrogen and carbon dioxide allowing a strong resilience under conditions lacking organic matter. The biofilm growth on soil particles allows coping with starvation or bad conditions of pH, temperature and pollutants. Its genomic capacity of two megaplasmids encoding several heavy metal resistance operons allowed growth in heavy metal contaminated habitats. In addition its specific siderophores seem to play a role in heavy metal sequestration besides their role in the management of bioavailable iron. Efflux ATPases and RND systems pump the metal cations to the membrane surface where polysaccharides serve as heavy metal binding and nucleation sites for crystallisation of metal carbonates. These polysaccharides contribute also to flotation under specific conditions in a soil-heavy metals–bacteria suspension mixture. An inoculated moving bed sand filter was constructed to treat heavy metal contaminated water and to remove the metals in the form of biomass mixed with metal carbonates. A membrane based contactor allowed to use the bacteria as well in a versatile wastewater treatment system and to grow homogeneously formed heavy metal carbonates. Its behaviour toward heavy metal binding and flotation was combined in a biometal sludge reactor to extract and separate heavy metals from metal contaminated soils. Finally its metal-induced heavy metal resistance allowed constructing whole cell heavy metal biosensors which, after contact with contaminated soil, waste, solids, minerals and ashes, were induced in function of the bioavailable concentration (Cd, Zn, Cu, Cr, Co, Ni, Tl, Pb and Hg) in the solids and allowed to investigate the speciation of immobilization of those metals. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
In the past few decades, increased awareness of environmental pollution has led to the exploitation of microbial metabolic potential in the construction of several genetically engineered microorganisms (GEMs) for bioremediation purposes. At the same time, environmental concerns and regulatory constraints have limited the in situ application of GEMs, the ultimate objective behind their development. In order to address the anticipated risks due to the uncontrolled survival/dispersal of GEMs or recombinant plasmids into the environment, some attempts have been made to construct systems that would contain the released organisms. This article discusses the designing of safer genetically engineered organisms for environmental release with specific emphasis on the use of bacterial plasmid addiction systems to limit their survival thus minimizing the anticipated risk. We also conceptualize a novel strategy to construct "Suicidal Genetically Engineered Microorganisms (SGEMs)" by exploring/combining the knowledge of different plasmid addiction systems (such as antisense RNA-regulated plasmid addiction, proteic plasmid addiction etc.) and inducible degradative operons of bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号