首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   29篇
  2021年   1篇
  2018年   2篇
  2017年   3篇
  2015年   7篇
  2014年   1篇
  2013年   6篇
  2012年   10篇
  2011年   4篇
  2010年   6篇
  2009年   10篇
  2008年   8篇
  2007年   11篇
  2006年   7篇
  2005年   3篇
  2004年   5篇
  2003年   9篇
  2002年   10篇
  2001年   12篇
  2000年   9篇
  1999年   13篇
  1998年   7篇
  1997年   7篇
  1996年   5篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   6篇
  1991年   6篇
  1990年   4篇
  1989年   9篇
  1988年   4篇
  1987年   6篇
  1986年   3篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1978年   1篇
  1977年   4篇
  1973年   1篇
  1972年   1篇
  1958年   1篇
  1938年   1篇
  1934年   1篇
  1924年   1篇
排序方式: 共有218条查询结果,搜索用时 15 毫秒
1.
A low pH method of liposome-membrane fusion (Schneider et al., 1980, Proc. Natl. Acad. Sci. U. S. A. 77:442) was used to enrich the mitochondrial inner membrane lipid bilayer 30-700% with exogenous phospholipid and cholesterol. By varying the phospholipid-to- cholesterol ratio of the liposomes it was possible to incorporate specific amounts of cholesterol (up to 44 mol %) into the inner membrane bilayer in a controlled fashion. The membrane surface area increased proportionally to the increase in total membrane bilayer lipid. Inner membrane enriched with phospholipid only, or with phospholipid plus cholesterol up to 20 mol %, showed randomly distributed intramembrane particles (integral proteins) in the membrane plane, and the average distance between intramembrane particles increased proportionally to the amount of newly incorporated lipid. Membranes containing between 20 and 27 mol % cholesterol exhibited small clusters of intramembrane particles while cholesterol contents above 27 mol % resulted in larger aggregations of intramembrane particles. In phospholipid-enriched membranes with randomly dispersed intramembrane particles, electron transfer activities from NADH- and succinate-dehydrogenase to cytochrome c decreased proportionally to the increase in distance between the particles. In contrast, these electron- transfer activities increased with decreasing distances between intramembrane particles brought about by cholesterol incorporation. These results indicate that (a) catalytically interacting redox components in the mitochondrial inner membrane such as the dehydrogenase complexes, ubiquinone, and heme proteins are independent, laterally diffusible components; (b) the average distance between these redox components is effected by the available surface area of the membrane lipid bilayer; and (c) the distance over which redox components diffuse before collision and electron transfer mediates the rate of such transfer.  相似文献   
2.
3.
In non-alcoholic fatty liver disease (NAFLD) and insulin resistance, hepatic de novo lipogenesis is often elevated, but the underlying mechanisms remain poorly understood. Recently, we show that CDK8 functions to suppress de novo lipogenesis. Here, we identify the mammalian target of rapamycin complex 1 (mTORC1) as a critical regulator of CDK8 and its activating partner CycC. Using pharmacologic and genetic approaches, we show that increased mTORC1 activation causes the reduction of the CDK8-CycC complex in vitro and in mouse liver in vivo. In addition, mTORC1 is more active in three mouse models of NAFLD, correlated with the lower abundance of the CDK8-CycC complex. Consistent with the inhibitory role of CDK8 on de novo lipogenesis, nuclear SREBP-1c proteins and lipogenic enzymes are accumulated in NAFLD models. Thus, our results suggest that mTORC1 activation in NAFLD and insulin resistance results in down-regulation of the CDK8-CycC complex and elevation of lipogenic protein expression.  相似文献   
4.
5.

Background

Due to the limited number of experimental studies that mechanically characterise human atherosclerotic plaque tissue from the femoral arteries, a recent trend has emerged in current literature whereby one set of material data based on aortic plaque tissue is employed to numerically represent diseased femoral artery tissue. This study aims to generate novel vessel-appropriate material models for femoral plaque tissue and assess the influence of using material models based on experimental data generated from aortic plaque testing to represent diseased femoral arterial tissue.

Methods

Novel material models based on experimental data generated from testing of atherosclerotic femoral artery tissue are developed and a computational analysis of the revascularisation of a quarter model idealised diseased femoral artery from a 90% diameter stenosis to a 10% diameter stenosis is performed using these novel material models. The simulation is also performed using material models based on experimental data obtained from aortic plaque testing in order to examine the effect of employing vessel appropriate material models versus those currently employed in literature to represent femoral plaque tissue.

Results

Simulations that employ material models based on atherosclerotic aortic tissue exhibit much higher maximum principal stresses within the plaque than simulations that employ material models based on atherosclerotic femoral tissue. Specifically, employing a material model based on calcified aortic tissue, instead of one based on heavily calcified femoral tissue, to represent diseased femoral arterial vessels results in a 487 fold increase in maximum principal stress within the plaque at a depth of 0.8 mm from the lumen.

Conclusions

Large differences are induced on numerical results as a consequence of employing material models based on aortic plaque, in place of material models based on femoral plaque, to represent a diseased femoral vessel. Due to these large discrepancies, future studies should seek to employ vessel-appropriate material models to simulate the response of diseased femoral tissue in order to obtain the most accurate numerical results.
  相似文献   
6.

Background  

Methylation of lysine 79 on histone H3 by Dot1 is required for maintenance of heterochromatin structure in yeast and humans. However, this histone modification occurs predominantly in euchromatin. Thus, Dot1 affects silencing by indirect mechanisms and does not act by the recruitment model commonly proposed for histone modifications. To better understand the role of H3K79 methylation gene silencing, we investigated the silencing function of Dot1 by genetic suppressor and enhancer analysis and examined the relationship between Dot1 and other global euchromatic histone modifiers.  相似文献   
7.
Treatment of human placenta membranes at pH 8.5 in the presence of 2.0 mM dithiothreitol (DTT) for 5 min, followed by the simultaneous removal of the DTT and pH adjustment to pH 7.6, resulted in the formation of a functional alpha beta heterodimeric insulin-like growth factor 1 (IGF-1) receptor complex from the native alpha 2 beta 2 heterotetrameric disulfide-linked state. The membrane-bound alpha beta heterodimeric complex displayed similar curvilinear 125I-IGF-1 equilibrium binding compared to the alpha 2 beta 2 heterotetrameric complex. Triton X-100 solubilization of the alkaline pH and DTT-pretreated placenta membranes, followed by Bio-Gel A-1.5m gel filtration chromatography, was found to effectively separate the alpha 2 beta 2 heterotetrameric and alpha beta heterodimeric IGF-1 receptor species, 125I-IGF-1 binding to both the isolated alpha 2 beta 2 heterotetrameric and alpha beta heterodimeric complexes demonstrated a marked straightening of the Scatchard plots, compared to the placenta membrane-bound IGF-1 receptors, with a 2-fold increase in the high-affinity binding component. Similar to the membrane-bound IGF-1 receptor species, the 125I-IGF-1 binding properties between the alpha 2 beta 2 heterotetrameric and alpha beta heterodimeric complexes were not significantly different. IGF-1 stimulation of IGF-1 receptor autophosphorylation indicated that the ligand-dependent activation of alpha beta heterodimeric protein kinase activity occurred concomitant with the reassociation into a covalent alpha 2 beta 2 heterotetrameric state.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
8.
Effects of coumarin on fresh weight, dry matter, protein and nucleic acid content per cell in attached roots of maize and wheat and in whole excised elongation zones of maize were determined. The inhibition in cell length exerted by coumarin did not correspond to an inhibition of the net synthetic capacity. Coumarin treatment increased the cell surface, the production of dry matter and the protein content per cell. The dry matter and the protein content per unit surface was slightly increased or unaffected. The effect of coumann on cell shape seemed to be independent of that on dry matter production and net protein synthesis. The same was found in excised elongation zones. —The net DNA-synthesis per cell was slightly increased in attached roots by coumann treatment, but this effect was probably not correlated with the morphogenetic changes. Inhibition of DNA-synthesis with hydroxyurea did not alter the coumarin induced changes in cell shape. —The net RNA-synthesis per cell was slightly decreased after coumarin treatment, but the net RNA-synthesis per cell and the morphogenetic effects exerted by coumarin were not related with each other. Inhibition of m-RNA-synthesis with actinomycin D did not prevent the effects of coumarin on cell division, cell expansion, dry matter production and net protein synthesis. The same was true for inhibitors of protein synthesis, puromycin and p-fluorophenyl-alanine. The findings are in support of the view that coumarin affects already existing structures or enzymes. —Comparisons between coumarin and the uncouplers, DNP and dicoumarol, showed that the effects of coumarin were not, solely, due to uncoupling. SH-protecting agents, BAL, DTE and glutathione, did, with few exceptions, not reduce the morphogenetic effects of coumarin.  相似文献   
9.
Dynamin is functionally coupled to insulin granule exocytosis   总被引:1,自引:0,他引:1  
The insulin granule integral membrane protein marker phogrin-green fluorescent protein was co-localized with insulin in Min6B1 beta-cell secretory granules but did not undergo plasma membrane translocation following glucose stimulation. Surprisingly, although expression of a dominant-interfering dynamin mutant (Dyn/K44A) inhibited transferrin receptor endocytosis, it had no effect on phogringreen fluorescent protein localization in the basal or secretagogue-stimulated state. By contrast, co-expression of Dyn/K44A with human growth hormone as an insulin secretory marker resulted in a marked inhibition of human growth hormone release by glucose, KCl, and a combination of multiple secretagogues. Moreover, serial pulse depolarization stimulated an increase in cell surface capacitance that was also blocked in cells expressing Dyn/K44A. Similarly, small interference RNA-mediated knockdown of dynamin resulted in marked inhibition of glucose-stimulated insulin secretion. Together, these data suggest the presence of a selective kiss and run mechanism of insulin release. Moreover, these data indicate a coupling between endocytosis and exocytosis in the regulation of beta-cell insulin secretion.  相似文献   
10.

Background  

Neisseria meningitidis is a human pathogen that can infect diverse sites within the human host. The major diseases caused by N. meningitidis are responsible for death and disability, especially in young infants. In general, most of the recent work on N. meningitidis focuses on potential antigens and their functions, immunogenicity, and pathogenicity mechanisms. Very little work has been carried out on Neisseria primary metabolism over the past 25 years.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号