首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185篇
  免费   7篇
  2021年   2篇
  2019年   2篇
  2018年   5篇
  2017年   3篇
  2016年   6篇
  2015年   9篇
  2014年   4篇
  2013年   16篇
  2012年   11篇
  2011年   18篇
  2010年   5篇
  2009年   9篇
  2008年   12篇
  2007年   15篇
  2006年   12篇
  2005年   15篇
  2004年   13篇
  2003年   14篇
  2002年   12篇
  2001年   3篇
  2000年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1984年   1篇
排序方式: 共有192条查询结果,搜索用时 51 毫秒
1.
CD22 is an inhibitory B-cell co-receptor whose function is modulated by sialic acid (Sia)-bearing glycan ligands. Glycan remodeling in the germinal center (GC) alters CD22 ligands, with as yet no ascribed biological consequence. Here, we show in both mice and humans that loss of high affinity ligands on GC B-cells unmasks the binding site of CD22 relative to naive and memory B-cells, promoting recognition of trans ligands. The conserved modulation of CD22 ligands on GC B-cells is striking because high affinity glycan ligands of CD22 are species-specific. In both species, the high affinity ligand is based on the sequence Siaα2–6Galβ1–4GlcNAc, which terminates N-glycans. The human ligand has N-acetylneuraminic acid (Neu5Ac) as the sialic acid, and the high affinity ligand on naive B-cells contains 6-O-sulfate on the GlcNAc. On human GC B-cells, this sulfate modification is lost, giving rise to lower affinity CD22 ligands. Ligands of CD22 on naive murine B-cells do not contain the 6-O-sulfate modification. Instead, the high affinity ligand for mouse CD22 has N-glycolylneuraminic acid (Neu5Gc) as the sialic acid, which is replaced on GC B-cells with Neu5Ac. Human naive and memory B-cells express sulfated glycans as high affinity CD22 ligands, which are lost on GC B-cells. In mice, Neu5Gc-containing glycans serve as high affinity CD22 ligands that are replaced by Neu5Ac-containing glycans on GC B-cells. Our results demonstrate that loss of high affinity CD22 ligands on GC B-cells occurs in both mice and humans through alternative mechanisms, unmasking CD22 relative to naive and memory B-cells.  相似文献   
2.
3.
4.
5.
6.
Rac Regulates Vascular Endothelial Growth Factor Stimulated Motility   总被引:4,自引:0,他引:4  
During angiogenesis endothelial cells migrate towards a chemotactic stimulus. Understanding the mechanism of endothelial cell migration is critical to the therapeutic manipulation of angiogenesis and ultimately cancer prevention. Vascular endothelial growth factor (VEGF) is a potent chemotactic stimulus of endothelial cells during angiogenesis. The endothelial cell signal transduction pathway of VEGF represents a potential target for cancer therapy, but the mechanisms of post-receptor signal transduction including the roles of rho family GTPases in regulating the cytoskeletal effects of VEGF in endothelial cells are not understood.

Here we analyze the mechanisms of cell migration in the mouse brain endothelial cell line (bEND3). Stable transfectants containing a tetracycline repressible expression vector were used to induce expression of Rac mutants. Endothelial cell haptotaxis was stimulated by constitutively active V12Rac on collagen and vitronectin coated supports, and chemotaxis was further stimulated by VEGF. Osteopontin coated supports were the most stimulatory to bEND3 haptotaxis, but VEGF was not effective in further increasing migration on osteopontin coated supports. Haptotaxis on support coated with collagen, vitronectin, and to a lesser degree osteopontin was inhibited by N17 Rac. N17 Rac expression blocked stimulation of endothelial cell chemotaxis by VEGF. As part of the chemotactic stimulation, VEGF caused a loss of actin organization at areas of cell-cell contact and increased stress fiber expression in endothelial cells which were directed towards pores in the transwell membrane. N17 Rac prevented the stimulation of cell-cell contact disruption and the stress fiber stimulation by VEGF.

These data demonstrate two pathways of regulating endothelial cell motility, one in which Rac is activated by matrix/integrin stimulation and is a crucial modulator of endothelial cell haptotaxis. The other pathway, in the presence of osteopontin, is Rac independent. VEGF stimulated chemotaxis, is critically dependent on Rac activation. Osteopontin was a potent matrix activator of motility, and perhaps one explanation for the absence of a VEGF plus osteopontin effect is that osteopontin stimulated motility was inhibitory to the Rac pathway.  相似文献   
7.
Cutaneous leishmaniasis (CL) is gaining attention as a public health problem. We present two cases of CL imported from Syria and Venezuela in Japan. We diagnosed them as CL non-invasively by the direct boil loop-mediated isothermal amplification method and an innovative sequencing method using the MinION? sequencer. This report demonstrates that our procedure could be useful for the diagnosis of CL in both clinical and epidemiological settings.  相似文献   
8.
Chronic inflammatory diseases, such as rheumatoid arthritis and periodontitis-caused bone destruction, results from an increase of bone-resorbing osteoclasts (OCs) induced by inflammation. However, the detailed mechanisms underlying this disorder remain unclear. We herein investigated that the effect of urokinase-type plasminogen activator (uPA) on inflammatory osteoclastogenesis induced by lipopolysaccharide (LPS), which is a potent stimulator of bone resorption in inflammatory diseases. We found that the uPA deficiency promoted inflammatory osteoclastogenesis and bone loss induced by LPS. We also showed that LPS induced the expression of uPA, and the uPA treatment attenuated the LPS-induced inflammatory osteoclastogenesis of RAW264.7 mouse monocyte/macrophage lineage cells. Additionally, we showed that the uPA-attenuated inflammatory osteoclastgenesis is associated with the activation of plasmin/protease-activated receptor (PAR)-1 axis by uPA. Moreover, we examined the mechanism underlying the effect of uPA on inflammatory osteoclastogenesis, and found that uPA/plasmin/PAR-1 activated the adenosine monophosphate-activated protein kinase (AMPK) pathway through Ca2+/calmodulin dependent protein kinase kinase (CaMKK) activation, and attenuated inflammatory osteoclastogenesis by inactivation of NF-κB in RAW264.7 cells. These data suggest that uPA attenuated inflammatory osteoclastogenesis through the plasmin/PAR-1/Ca2+/CaMKK/AMPK axis. Our findings may provide a novel therapeutic approach to bone loss caused by inflammatory diseases.  相似文献   
9.
Biotinylation is useful for the detection, purification and immobilization of proteins. It is performed by chemical modification, although position-specific and quantitative biotinylation is rarely achieved. We developed a position-specific biotinylation method using biotinylated non-natural amino acids. We showed that biotinylated p-aminophenylalanine derivatives were incorporated into a protein more efficiently than biotinylated lysine derivatives in a cell-free translation system. In addition, the biotinylated p-aminophenylalanines overcame the serious position-dependency observed for biotinylated lysines. The present method will be useful for detection and purification of proteins along with comprehensive exploration of surface-exposed residues and oriented immobilization of proteins.  相似文献   
10.
Mice lacking the PACAP gene (PACAP(-/-)) display psychomotor abnormalities such as novelty-induced hyperactivity and jumping behavior, and they show different responses to amphetamine, a typical psychostimulant. The present study examined the possible role of endogenous PACAP in methamphetamine (METH)-induced hyperactivity and behavioral sensitization. The locomotor activity of hyperactive PACAP(-/-) mice was measured using the infrared photocell beam detection system, Acti-Track, after a habituation period. Single administration of METH (1 and 2mg/kg) caused a robust increase in locomotor activity of mice, but this effect did not differ between wild-type and PACAP(-/-) mice. Repeated administration of METH (1mg/kg) for 7 days enhanced METH-induced hyperactivity, and this sensitization was observed even when withdrawn for 7 days. There was no difference in the degree of development and expression of METH-induced behavioral sensitization between wild-type and PACAP(-/-) mice. In addition, there was no difference in METH-induced increases in extracellular serotonin and dopamine levels in the prefrontal cortex of the normal and sensitized mice between the two groups. These results suggest that endogenous PACAP is not involved in the locomotor stimulant activity of acute METH and repeated METH-induced behavioral and neurochemical sensitization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号