首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   454篇
  免费   15篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2019年   5篇
  2018年   6篇
  2017年   3篇
  2016年   12篇
  2015年   20篇
  2014年   19篇
  2013年   28篇
  2012年   39篇
  2011年   19篇
  2010年   16篇
  2009年   20篇
  2008年   34篇
  2007年   23篇
  2006年   22篇
  2005年   27篇
  2004年   26篇
  2003年   33篇
  2002年   27篇
  2001年   8篇
  2000年   16篇
  1999年   9篇
  1998年   4篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1993年   2篇
  1992年   5篇
  1991年   6篇
  1990年   3篇
  1989年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1978年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有469条查询结果,搜索用时 15 毫秒
1.
2.
It has been suggested that a suppression of maximal voluntary contraction (MVC) induced by prolonged vibration is due to an attenuation of Ia afferent activity. The purpose of the present study was to test the hypothesis that aftereffects following prolonged vibration on muscle activity during MVC differ among plantar flexor synergists owing to a supposed difference in muscle fiber composition. The plantar flexion MVC torque and surface electromyogram (EMG) of the medial head of gastrocnemius (MG), the lateral head of gastrocnemius (LG), and the soleus (Sol) were recorded in 13 subjects before and after prolonged vibration applied to the Achilles tendon at 100 Hz for 30 min. The maximal H reflexes and M waves were also determined from the three muscles, and the ratio between H reflexes and M waves (H/Mmax) was calculated before and after the vibration. The MVC torque was decreased by 16.6 +/- 3.7% after the vibration (P < 0.05; ANOVA). The H/Mmax also decreased for all three muscles, indicating that Ia afferent activity was successfully attenuated by the vibration in all plantar flexors. However, a reduction of EMG during MVC was observed only in MG (12.7 +/- 4.0%) and LG (11.4 +/- 3.9%) (P < 0.05; ANOVA), not in Sol (3.4 +/- 3.0%). These results demonstrated that prolonged vibration-induced MVC suppression was attributable mainly to the reduction of muscle activity in MG and LG, both of which have a larger proportion of fast-twitch muscle fibers than Sol. This finding suggests that Ia-afferent activity that reinforces the recruitment of high-threshold motor units is necessary to enhance force exertion during MVC.  相似文献   
3.
In order to reduce the cost of bioethanol production from lignocellulosic biomass, we conferred the ability to ferment cellulosic materials directly on Zymobacter palmae by co-expressing foreign endoglucanase and β-glucosidase genes. Z. palmae is a novel ethanol-fermenting bacterium capable of utilizing a broad range of sugar substrates, but not cellulose. Therefore, the six genes encoding the cellulolytic enzymes (CenA, CenB, CenD, CbhA, CbhB, and Cex) from Cellulomonas fimi were introduced and expressed in Z. palmae. Of these cellulolytic enzyme genes cloned, CenA degraded carboxymethylcellulose and phosphoric acid-swollen cellulose (PASC) efficiently. The extracellular CenA catalyzed the hydrolysis of barley β-glucan and PASC to liberate soluble cello-oligosaccharides, indicating that CenA is the most suitable enzyme for cellulose degradation among those cellulolytic enzymes expressed in Z. palmae. Furthermore, the cenA gene and β-glucosidase gene (bgl) from Ruminococcus albus were co-expressed in Z. palmae. Of the total endoglucanase and β-glucosidase activities, 57.1 and 18.1 % were localized in the culture medium of the strain. The genetically engineered strain completely saccharified and fermented 20 g/l barley β-glucan to ethanol within 84 h, producing 79.5 % of the theoretical yield. Thus, the production and secretion of CenA and BGL enabled Z. palmae to efficiently ferment a water-soluble cellulosic polysaccharide to ethanol.  相似文献   
4.
N-Benzoylgiycine amidohydrolase (hippurate hydrolase EC 3.5.1.32), which catalyzes the hydrolysis of hippuric acid to benzoic acid and glycine, was found in a cell-free extract of Pseudomonas putida C692-3 grown on a medium containing hippuric acid. The enzyme was purified from the extract by ammonium sulfate fractionation and column chromatographies on DEAE-cellulose, DEAE-Sephadex A-50, hydroxyapatite, and Sepharose CL-6B. The enzyme was finally crystallized. The crystalline enzyme was almost homogeneous on electrophoresis. The enzyme had a molecular weight of about 170,000 and consisted of four subunits identical in molecular weight (approximately 42,000). The enzyme hydrolyzed N-benzoylglycine most rapidly, and N-benzoyl-l-alanine and N-benzoyl-l-aminobutyric acid. The Km value for these substrates were 0.72 mm, 0.87 mm, and 0.87mm, respectively. The optimum pH of the enzyme reaction was 7.0 to 8.0 and the enzyme was stable from pH 6.0 to 8.0.  相似文献   
5.
The preparatory motion of a defensive motion in contact sport such as basketball should be small and involve landing on both feet for strict time and motion constraints. We thus proposed the movement creating a unweighted state. Ten basketball players performed a choice reaction sidestepping task with and without the voluntary, continuous vertical fluctuation movement. The results indicated that the preparatory movement shortened the time of their sidestep initiation (301 vs. 314 ms, p = 0.011) and reaching performance (883 vs. 910 ms, p = 0.018) but did not increase their peak ground reaction force or movement velocity. The mechanism of the improvement was estimated to be the following: in the preparation phase, the vertical body fluctuation created the force fluctuation; after the direction signal, the unweighted state can shorten the time required to initiate the sidestepping (unweighted: 279 ms; weighted: 322 ms, p = 0.002); around the initiation phase, the dropping down of the body and weighted state can contribute to the reaching performance. We conducted additional experiment investigating muscle–tendon-complex dynamics and muscle activity using ultrasound device and electromyography. The result suggests that the building up of active state of muscle might explain the improvement of sidestepping performance.  相似文献   
6.
7.
A majority of the potential health benefits of green tea, including the potential to prevent cognitive decline, have been attributed to epigallocatechin gallate (EGCG). Sunrouge is a green tea cultivar that contains EGCG and several other bioactive components such as quercetin, myricetin, cyanidin and delphinidin. We compared the effects of Sunrouge and Yabukita, the most popular Japanese green tea cultivar, on cognitive function in the senescence-accelerated mouse Prone8. These mice were fed an experimental diet containing Sunrouge extract (SRE) or Yabukita extract (YBE). SRE feeding significantly prevented cognitive decline, whereas YBE feeding had little effect. Moreover, SRE feeding prevented elevation of the amyloid-β42 level while improving the gene expression of neprilysin and decreasing beta-site APP-cleaving enzyme 1 in the brain. These preventive effects of SRE against cognitive decline were attributed to the characteristic composition of Sunrouge and strongly suggest that consumption of this cultivar could protect against age-related cognitive decline.  相似文献   
8.
9.
10.
β-D-galactofuranose (Galf) is a component of polysaccharides and glycoconjugates and its transferase has been well analyzed. However, no β-D-galactofuranosidase (Galf-ase) gene has been identified in any organism. To search for a Galf-ase gene we screened soil samples and discovered a strain, identified as a Streptomyces species by the 16S ribosomal RNA gene analysis, that exhibits Galf-ase activity for 4-nitrophenyl β-D-galactofuranoside (pNP-β-D-Galf) in culture supernatants. By draft genome sequencing of the strain, named JHA19, we found four candidate genes encoding Galf-ases. Using recombinant proteins expressed in Escherichia coli, we found that three out of four candidates displayed the activity of not only Galf-ase but also α-L-arabinofuranosidase (Araf-ase), whereas the other one showed only the Galf-ase activity. This novel Galf-specific hydrolase is encoded by ORF1110 and has an optimum pH of 5.5 and a Km of 4.4 mM for the substrate pNP-β-D-Galf. In addition, this enzyme was able to release galactose residue from galactomannan prepared from the filamentous fungus Aspergillus fumigatus, suggesting that natural polysaccharides could be also substrates. By the BLAST search using the amino acid sequence of ORF1110 Galf-ase, we found that there are homolog genes in both prokaryotes and eukaryotes, indicating that Galf-specific Galf-ases widely exist in microorganisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号