首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   1篇
  国内免费   2篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2011年   5篇
  2010年   4篇
  2009年   2篇
  2008年   6篇
  2007年   4篇
  2006年   4篇
  2005年   5篇
  2004年   3篇
  2003年   6篇
  2002年   2篇
  2001年   6篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1987年   1篇
  1979年   1篇
排序方式: 共有74条查询结果,搜索用时 15 毫秒
1.
The distribution and species diversity of aerobic organotrophic bacteria in the Dagang high-temperature oil field (China), which is exploited with water-flooding, have been studied. Twenty-two strains of the most characteristic thermophilic and mesophilic aerobic organotrophic bacteria have been isolated from the oil stratum. It has been found that, in a laboratory, the mesophilic and thermophilic isolates grow in the temperature, pH, and salinity ranges characteristic of the injection well near-bottom zones or of the oil stratum, respectively, and assimilate a wide range of hydrocarbons, fatty acids, lower alcohols, and crude oil, thus exhibiting adaptation to the environment. Using comparative phylogenetic 16S rRNA analysis, the taxonomic affiliation of the isolates has been established. The aerobic microbial community includes gram-positive bacteria with a high and low G+C content of DNA, and γ and β subclasses of Proteobacteria. The thermophilic bacteria belong to the genera Geobacillus and Thermoactinomyces, and the mesophilic strains belong to the genera Bacillus, Micrococcus, Cellulomonas, Pseudomonas, and Acinetobacter. The microbial community of the oil stratum is dominated by known species of the genus Geobacillus (G. subterraneus, G. stearothermophilus, and G. thermoglucosidasius) and a novel species “Geobacillus jurassicus.” A number of novel thermophilic oil-oxidizing bacilli have been isolated.__________Translated from Mikrobiologiya, Vol. 74, No. 3, 2005, pp. 401–409.Original Russian Text Copyright © 2005 by Nazina, Sokolova, Shestakova, Grigoryan, Mikhailova, Babich, Lysenko, Tourova, Poltaraus, Qingxian Feng, Fangtian Ni, Belyaev.  相似文献   
2.
Belyaev  S. S.  Borzenkov  I. A.  Nazina  T. N.  Rozanova  E. P.  Glumov  I. F.  Ibatullin  R. R.  Ivanov  M. V. 《Microbiology》2004,73(5):590-598
  相似文献   
3.
4.
Microbial diversity and biogeochemical processes of the Gangxi bed with low-mineral water and a temperature gradient from 35 to 54°C were studied. The 16S rRNA gene clone libraries (over 800 clones) were obtained from microbial DNA isolated from formation water and from the primary enrichment cultures for fermenting, sulfate-reducing, methanogenic, and aerobic organotrophic prokaryotes. While both sulfate reduction and methanogenesis were registered in formation water by radioisotope techniques, the genes of sulfate-reducing prokaryotes were not revealed in the 16S rRNA gene clone library from formation water. The 16S rRNA genes of Methanobacterium congolense and Methanococcus vannielii predominated among archaeal sequences retrieved from formation water, while the genes of Methanothermobacter thermoautotrophicus, Methanomethylovorans thermophila, and Methanoculleus sp. predominated in the combined library from enrichment cultures. In the library of Bacteria 16S rRNA genes from formation water, the genes of thermophilic fermentative bacteria of the family Thermoanaerobacteriaceae predominated; the remaining sequences belonged to mesophiles (genera Brevundimonas, Sphingomonas, Oxalicibacterium, and Stenotrophomonas), the phylum Chloroflexi, and unidentified bacteria. The combined library from enrichment cultures, contained, apart from the sequences of the family Thermoanaerobacteriaceae, the genes of fermentative bacteria (genera Anaerobaculum, Coprothermobacter, Thermanaerovibrio, Soehngenia, Bacteroides, and Aminobacterium and the order Thermotogales), of aerobic hydrocarbon-oxidizing bacteria (genera Pannonibacter and Pseudomonas), and of sulfate reducers (genera Desulfomicrobium, Thermodesulfovibrio, and Desulfotomaculum). High coverage was shown for bacterial (97.6%) and archaeal (100%) clone libraries, indicating that a significant portion of the microbial diversity in the studied communities was revealed.  相似文献   
5.
Microbiological technology for the enhancement of oil recovery based on the activation of the stratal microflora was tested in the high-temperature horizons of the Kongdian bed (60 degrees C) of the Dagang oil field (China). This biotechnology consists in the pumping of a water-air mixture and nitrogen and phosphorus mineral salts into the oil stratum through injection wells in order to stimulate the activity of the stratal microflora which produce oil-releasing metabolites. Monitoring of the physicochemical, microbiological, and production characteristics of the test site has revealed large changes in the ecosystem as a result of the application of biotechnology. The cell numbers of thermophilic hydrocarbon-oxidizing, fermentative, sulfate-reducing, and methanogenic microorganisms increased 10-10 000-fold. The rates of methanogenesis and sulfate reduction increased in the near-bottom zone of the injection wells and of some production wells. The microbial oil transformation was accompanied by the accumulation of bicarbonate ions, volatile fatty acids, and biosurfactants in the formation waters, as well as of CH4 and CO2 both in the gas phase and in the oil. Microbial metabolites promoted the additional recovery of oil. As a result of the application of biotechnology, the water content in the production liquid from the test site decreased, and the oil content increased. This allowed the recovery of more than 14000 tons of additional oil over 3.5 years.  相似文献   
6.
7.
A diverse and active microbial community in the stratal waters of the Daqing oil field (China), which is exploited with the use of water-flooding, was found to contain aerobic chemoheterotrophic bacteria (including hydrocarbon-oxidizing ones) and anaerobic fermentative, sulfate-reducing, and methanogenic bacteria. The aerobic bacteria were most abundant in the near-bottom zones of injection wells. Twenty pure cultures of aerobic saprotrophic bacteria were isolated from the stratal waters. Under laboratory conditions, they grew at temperatures, pH, and salinity values typical of the stratal water from which they were isolated. These isolates were found to be able to utilize crude oil and a wide range of hydrocarbons, fatty acids, and alcohols. Phylogenetic analysis carried out with the use of complete 16S rRNA sequences showed that the isolates could be divided into three major groups: gram-positive bacteria with a high and a low G + C content of DNA and gram-negative bacteria of the gamma-subclass of the Proteobacteria. Gram-positive isolates belonged to the genera Bacillus, Brevibacillus, Rhodococcus, Dietzia, Kocuria, Gordonia, Cellulomonas, and Clavibacter. Gram-negative isolates belonged to the genera Pseudomonas and Acinetobacter. In their 16S rRNA sequences, many isolates were similar to the known microbial species and some probably represented new species.  相似文献   
8.
Two copies of the 16S rRNA gene, rrnA and rrnB, of the type strain 17T of the thermophilic sulfate-reducing bacterium Desulfotomaculum kuznetsovii were cloned and completely sequenced. The comparison of the determined sequences revealed considerable heterogeneity (8.3%) of the two genes, rrnA and rrnB. The main differences were associated with superlong inserts located at the variable 5'- and 3'-terminal regions of the 16S rRNA genes. Comparative analysis that involved analogous genes from the phylogenetically closest representatives of the genus Desulfotomaculum showed that disregard of the heterogeneity of the two gene copies distorts the position of the bacterium studied in the phylogenetic tree.  相似文献   
9.
10.
This study focused on the physiological, chemotaxonomic, and genotypic characteristics of two thermophilic spore-forming sulfate-reducing bacterial strains, 435T and 781, of which the former has previously been assigned to the subspecies Desulfotomaculum nigrificans subsp. salinus. Both strains reduced sulfate with the resulting production of H2S on media supplemented with H2 + CO2, formate, lactate, pyruvate, malate, fumarate, succinate, methanol, ethanol, propanol, butanol, butyrate, valerate, or palmitate. Lactate oxidation resulted in acetate accumulation; butyrate was oxidized completely, with acetate as an intermediate product. Growth on acetate was slow and weak. Sulfate, sulfite, thiosulfate, and elemental sulfur, but not nitrate, served as electron acceptors for growth with lactate. The bacteria performed dismutation of thiosulfate to sulfate and hydrogen sulfide. In the absence of sulfate, pyruvate but not lactate was fermented. Cytochromes of b and c types were present. The temperature and pH optima for both strains were 60-65 degrees C and pH 7.0. Bacteria grew at 0 to 4.5-6.0% NaCl in the medium, with the optimum being at 0.5-1.0%. Phylogenetic analysis based on a comparison of incomplete 16S rRNA sequences revealed that both strains belonged to the C cluster of the genus Desulfotomaculum, exhibiting 95.5-98.3% homology with the previously described species. The level of DNA-DNA hybridization of strains 435T and 781 with each other was 97%, while that with closely related species D. kuznetsovii 17T was 51-52%. Based on the phenotypic and genotypic properties of strains 435T and 781, it is suggested that they be assigned to a new species: Desulfotomaculum salinum sp. nov., comb. nov. (type strain 435T = VKM B 1492T).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号