首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   15篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   6篇
  2014年   7篇
  2013年   4篇
  2012年   4篇
  2011年   3篇
  2010年   3篇
  2009年   5篇
  2008年   5篇
  2007年   7篇
  2006年   8篇
  2005年   7篇
  2004年   5篇
  2003年   6篇
  2002年   1篇
  2001年   5篇
  2000年   6篇
  1999年   4篇
  1998年   9篇
  1997年   3篇
  1996年   1篇
  1995年   3篇
  1992年   3篇
  1988年   1篇
  1984年   1篇
  1983年   1篇
  1980年   2篇
  1979年   3篇
  1977年   1篇
  1976年   1篇
  1975年   3篇
  1971年   1篇
  1954年   1篇
排序方式: 共有127条查询结果,搜索用时 15 毫秒
1.
2.

Background  

Pseudorabies virus (PRV) is an alphaherpesviruses whose native host is pig. PRV infection mainly causes signs of central nervous system disorder in young pigs, and respiratory system diseases in the adult.  相似文献   
3.
In vitro bioreactor production of Echinacea purpurea L. was used to facilitate the screening of compounds capable of eliciting increased secondary metabolite production. Based on previous experience with various bioreactors, the Southern Sun Liquid Lab Rocker was selected for this study as it produces healthy, vigorous, whole plants. The focus of the present study was to quantify the concentration of the medicinally important secondary metabolites caftaric acid and cichoric acid and to study the effect of growth regulators on the production of these compounds in this system. Both marker compounds were produced at levels that compared favorably to field grown plants. Application of gibberellic acid (GA3), paclobutrazol, uniconazole and a combined treatment of GA3 with paclobutrazol to the in vitro plants generally increased the concentration of caftaric acid in the roots with little effect on the concentration in the shoots. The concentration of cichoric acid was higher in the roots of treated plants than in the roots of control plants, but lower in corresponding shoots. The present study highlights the use of in vitro production of whole plants as a model system for studying the regulation of plant secondary metabolism in a controlled environment.  相似文献   
4.
Gold salts and phenylbutazone selectively inhibit the synthesis of PGF and PGE2 respectively. Lowered production of one prostaglandin species is accompanied by an increased production of the other. Selective inhibition by these drugs was observed in the presence of adrenaline, reduced glutathione and copper sulphate under conditions when most anti-inflammatory compounds inhibited PGE2 and PGF syntheses equally. It is postulated that selective inhibitors may have a different mode of action and beneficial effects may be related to the endogenous ratio of PGE to PGF required for normal function.  相似文献   
5.
In a variety of tumour systems, individuals carrying progressively growing neoplasms have lymphoid cells with a specific cytotoxic effect on cultured tumour cells from the same individual1–4. Since the sera of tumour-bearing individuals have been shown to prevent tumour cell destruction by immune lymphocytes in vitro2,5–8 and since this serum blocking activity appears early in primary and transplant tumour development5,7, it has been suggested that the appearance of this serum blocking activity might be responsible for the progressive growth of tumours in individuals having cytotoxic lymphocytes. Counteraction of this blocking activity would thus be of primary importance in facilitating the function of an already existing or bolstered cell-mediated immunity. The serum blocking activity might be inhibited in various ways, by preventing the formation of blocking antibody or by interfering with its action (“unblocking”), as demonstrated in Moloney sarcoma regressor sera9. This type of serum also has a therapeutic effect on Moloney sarcomas in vivo10,11, which has been tentatively attributed to its unblocking activity8,9 or, possibly, to a complement-dependent cytotoxicity10. Tumour growth in the Moloney sarcoma system, however, might be due in part to continuous recruitment of neoplastic cells by virus-induced transformation and so the therapeutic effect could be due to a virus-neutralizing serum activity9,10.  相似文献   
6.
Recent advances in the development of protocols for in vitro culture and genetic manipulation have provided new avenues for the development of novel varieties of Pelargonium and for use as model systems for investigating the factors controlling plant morphogenesis. Optimized techniques of meristem culture have supplemented the culture indexing methods in commercial greenhouse production resulting in availability of large-scale pathogen indexed planting material. Currently, technologies are available for the mass in vitro propagation of F1 hybrid Pelargonium through both organogenesis and somatic embryogenesis. The somatic embryogenesis model system has allowed researchers to identify critical factors controlling plant morphogenesis in vitro such as regulation of regeneration by growth regulators, choice of explant and characterization of induction and expression phases of morphogenesis in Pelargonium. Also, optimization of technologies for genetic transformation of Pelargonium opened up the possibilities for developing genotypes with novel characters, including resistance to some of the major diseases. Finally, the development of regeneration systems for Pelargonium spp. has facilitated conventional crop improvement programs, thereby providing a valuable resource to the horticultural industry.  相似文献   
7.
8.
The biochemical mechanisms underlying thidiazuron (TDZ)-induced regeneration in plant cells have not been clearly elucidated. Exposure of leaf explants of Echinacea purpurea to a medium containing TDZ results in undifferentiated cell proliferation and differentiated growth as mixed shoot organogenesis and somatic embryogenesis. The current studies were undertaken to determine the potential roles of auxin, indoleamines, and ion signaling in the dedifferentiation and redifferentiation of plant cells. E. purpurea leaf explants were found to contain auxin and the related indoleamine neurotransmitters, melatonin, and serotonin. The levels of these endogenous indoleamines were increased by exposure to TDZ associated with the induction of regeneration. The auxin-transport inhibitor 2,3,5-triiodobenzoic acid and auxin action inhibitor, p-chlorophenoxyisobutyric acid decreased the TDZ-induced regeneration but increased concentrations of endogenous serotonin and melatonin. As well, inhibitors of calcium and sodium transport significantly reduced TDZ-induced morphogenesis while increasing endogenous indoleamine content. These data indicate that TDZ-induced regeneration is the manifestation of a metabolic cascade that includes an initial signaling event, accumulation, and transport of endogenous plant signals such as auxin and melatonin, a system of secondary messengers, and a concurrent stress response.  相似文献   
9.
An approach of combining flow cytometry (FCM) analysis with morphological and chemical profiling was used to assess the genetic stability and bioactive compound diversity in a Scutellaria baicalensis Georgi (Huang-qin) germplasm collection that was clonally maintained in in vitro for a period of over 6 years. Based on the FCM analysis of nuclei samples from young shoots, the nuclear DNA content of S. baicalensis was calculated as 0.84 pg/2C. FCM analysis showed no significant variation in the nuclear DNA contents and ploidy levels in the long-term in vitro maintained germplasm lines. Germplasm lines, acclimatized to ex vitro conditions, exhibited distinctive plant growth and bioactive compound production capacities. The high level of genetic stability observed in in vitro maintained S. baicalensis lines opens up a variety of opportunities such as allowing long-term aseptic preservation and easy distribution of well-characterized germplasm lines of this medicinal plant species. This study represents a novel approach for continuous maintenance, monitoring, and production of medicinal plant tissues with specific chemistry.  相似文献   
10.
Protein-losing enteropathy (PLE), the loss of plasma proteins through the intestine, is a symptom in ostensibly unrelated diseases. Emerging commonalities indicate that genetic insufficiencies predispose for PLE and environmental insults, e.g. viral infections and inflammation, trigger PLE onset. The specific loss of heparan sulfate (HS) from the basolateral surface of intestinal epithelial cells only during episodes of PLE suggests a possible mechanistic link. In the first tissue culture model of PLE using a monolayer of intestinal epithelial HT29 cells, we proved that HS loss directly causes protein leakage and amplifies the effects of the proinflammatory cytokine tumor necrosis factor alpha (TNFalpha). Here, we extend our in vitro model to assess the individual and combined effects of HS loss, interferon gamma (IFNgamma), TNFalpha, and increased pressure, and find that HS plays a central role in the patho-mechanisms underlying PLE. Increased pressure, mimicking venous hypertension seen in post-Fontan PLE patients, substantially increased protein leakage, but HS loss, IFNgamma, or TNFalpha alone had only minor effects. However, IFNgamma up-regulated TNFR1 expression and amplified TNFalpha-induced protein leakage. IFNgamma and TNFalpha compromised the integrity of the HT29 monolayer and made it more susceptible to increased pressure. HS loss itself compromises the integrity of the monolayer, amplifying the effects of pressure, but also amplifies the effects of both cytokines. In the absence of HS a combination of increased pressure, IFNgamma, and TNFalpha caused maximum protein leakage. Soluble heparin fully compensated for HS loss, providing a reasonable explanation for patient favorable response to heparin therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号