首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mechanism of the stimulatory effect of prostaglandin (PG) F on the production of hexosamine-containing substances by cultured fibroblasts was studied with special reference to adenosine 3′:5′- cyclic monophosphate (cAMP). At the stationary phase, the cells were exposed for 6 hrs to PGF, E1, cAMP or dibutyryl-cAMP in a wide range of concentrations. cAMP itself showed a slight stimulation on the production of hexosamine-containing substances, and the effect was enhanced by using the dibutyryl derivative. PGF had much a greater capacity than either the exogeneous cAMP or the dibutyryl-cAMP for enhancing the production of hexosamine-containing substances. To know whether cAMP is involved in the stimulatory effect of PGF, intracellular cAMP level was concomitantly measured in both PGF and PGE1 treated cultures. Although the cellular cAMP level in PGE1 treated cultures was much higher than that in the PGF treated cultures, the stimulatory effect on the production of hexosamine-containing substances in PGE1 treated cultures was always much smaller than that in the PGF treated cultures. Moreover, PGF had a significant stimulatory effect on the production of hexosamine-containing substances even at a low concentration as 100 pg/ml, which is small enough not to increase any cellular cAMP level. From these results, it was concluded that the stimulatory effect of PGF on the production of hexosamine-containing substances by cultured fibroblasts is not mediated by cAMP and is caused by a mechanism different from that caused by cAMP.  相似文献   

2.
When ovine large luteal cells are placed in culture and exposed to PGF, there is a rapid and sustained increase in the concentration of free intracellular calcium which is believed to play a major role in the luteolytic and cytotoxic effects of PGF. Since administration of exogenous PGE2 can prevent spontaneous and PGF-induced luteolysis in vivo, and the cytotoxic effects of PGF on large luteal cells in vitro, the objective of this study was to determine if one mechanism by which PGE2 acts is to attenuate increases in free intracellular calcium induced by PGF. At concentrations of 10 nM or greater, PGF caused a significant and sustained increase in free intracellular calcium in large luteal cells. Similarly, PGE2 also induced increases in free intracellular calcium but required doses 20-fold greater than PGF. When PGE2 (1, 10 or 100 nM) was incubated with PGF (100 nM) increases in free intracellular calcium induced by PGF were attenuated (P<0.05) when measured 5 min, but not at 30 min, after initiation of treatment. The observed decrease in the concentration of free intracellular calcium at 5 min in response to PGF was the result of fewer cells responding to PGF. In addition, the concentrations of free intracellular calcium attained in the cells that did respond was reduced 25% compared to cells treated with PGF alone. Thus, part of the luteal protective actions of PGE2 appears to involve an inhibition of the early (5 min) increase in free intracellular calcium induced by PGF.  相似文献   

3.
Prostaglandin biosynthesis was studied in the rat uterus during the oestrous cycle. Uterine homogenates were incubated for 20 minutes in the presence of exogenous substrate (2.10−5M). PGF and PGE2 were measured by R.I.A.. A sharp peak PGF and a smaller peak of PGE2 were observed at prooestrus, 20 h. Another small PGE2 peak occurred at dioestrus II, 15 h. The lowest values of both PGs were found on dioestrus, 15 h. Plasma oestradiol concentration were highest at proestrus, 15 h and 20 h. A sharp progesterone peak occurred at prooestrus, 20 h. The PGF peak is next to the oestradiol peak and is superimposable or lags slightly beyond the progesterone peak.Incubation with 14C arachidonic acid and subsequent analysis of extracts by TLC and scanning showed that the major metabolite is PGI2, identified as 6 keto PGF. The conversion rate of arachidonic acid into 6 keto PGF is 5 times higher than into PGF. 6 keto PGF was further identified by GC/MS. No significant difference was observed between 6 keto PGF production during oestrus and dioestrus.  相似文献   

4.
Thw radioimmunological (RIA) determination of prostaglandin (PG) E2 and of PGF in urine humans and rats is described in detail. After extraction and chromatography PGE2 was determined by using a PGE specific antibody or by using either PGB or PGF specific antibodies after the respective conversion procedures. The three different RIA procedures were compared to each other. PGF was determined by a specific antibody to PGF. Basal excretion of PGE2 and of PGF in healthy women on free diet was 9.3 ng/hour ± 0.96 and 18.3 ng/hour ± 2.5 respectively. Furosemide increased the excretion of PGE2 and of PGF in humans significantly, while PG-excretion rates decreased on indomethacin. In rat urine PGE2 and PGE increased markedly from 46.2 pg/min ± 9.3 and 27 ± 3.4 to 253.8 ± 43.3 and 108 ± 12.6 pg/min (per one kidney) in the anesthetized-laparotomized animal. This increase was abolished after giving two different PG synthetase inhibitors.  相似文献   

5.
Gold salts and phenylbutazone selectively inhibit the synthesis of PGF and PGE2 respectively. Lowered production of one prostaglandin species is accompanied by an increased production of the other. Selective inhibition by these drugs was observed in the presence of adrenaline, reduced glutathione and copper sulphate under conditions when most anti-inflammatory compounds inhibited PGE2 and PGF syntheses equally. It is postulated that selective inhibitors may have a different mode of action in vivo and beneficial effects may be related to the endogenous ratio of PGE to PGF required for normal function.  相似文献   

6.
Antibodies directed toward PGF were prepared in rabbits. The serologic specificity of the immune reaction was determined by inhibition of sodium borohydride-reduced (3H) PGE2 anti-PGF binding by several prostaglandins. The antibodies to PGF recognize the β-hydroxyl configuration in the cyclopentane ring of PGF. With the use of both anti-PGF and anti-PGF, the product of PGE2 reduction by 9-ketoreductase purified from chicken heart was identified as PGF. Guinea pig liver and kidney homogenates were examined for PGE 9-ketoreductase activity. Although enzyme activity was present, no evidence of PGF production was found.  相似文献   

7.
The results of the present study establish that 1.5 mg PGE2 (lyophilized sodium salt) incorporated in one cm long open-ended Silastic-polyvinylpyrrolidone (PVP) tube when inserted into 10 day pregnant rats induced abortion within 70–72 hours in all the treated rats. A combined treatment of PGE2 and 17β-estradiol failed to increase the abortion inducing effect of a Silastic-PVP-PGE2 tube. It is observed that PGE2 is about 4 times less potent than PGF in inducing midterm abortion in rats. It is suggested that either PGE2 exerts luteolytic effect after being converted to PGF, although how it occurs is not clear; or PGE2 causes expulsion of the fetuses by its uterine stimulating property. 17β- estradiol increases the uterine synthesis of PGF as described earlier but seems not affecting the production of PGE2 by the uterus. The release rate of 3H-PGE2 from Silastic-PVP tube and is also described.  相似文献   

8.
High pressure liquid chromatography (HPLC) using 4′ × 1/8″ columns of a pellicular silica support (Corasil-II) allows identification of prostaglandins diastereomers based on their characteristic retention relative to a standard, PGE2 in this study. Surprisingly this simple method allows separation of PGE2, PGE1, and PGEo (dihydro-PGE1) or PGF2α, PGF1α, and PGFoα without resort to silver nitrate impregnated stationary phases. Even more subtle distinctions such as that between 13,14-dihydro-PGF2α, PGF1α and 5,6- -PGF2α are possible by HPLC. The differential refractometer detector used throughout can also be used for quantitation. This is illustrated by a study of the relative rates of degradation of natural PGF2α (an oil at the temperature employed, 41°C) and racemic PGF2α (mp. 63°) on exposure to air.  相似文献   

9.
The estimation of prostaglandin (PG) E2 and of PGF by radioimmunoassay is described in detail. PGE2 was measured after conversion to either PGB2 or PGF and the results compared to bioassay. The methods were used to follow the excretion of PGE2 and PGF after salt loading in rabbits. A marked reduction of PGE2 levels was observed at high NaCl intake, while PGF excretion remained unchanged.  相似文献   

10.
Four antiestrogens (anordiol, tamoxifen, RU 39411, ICI 182780) and the antiprogestin, mifepristone (RU 486), were administered to the following three animal models: (1) ovariectomized rats, (2) mated rats treated post-coitally; and (3) pregnant rats treated post-implantation. The antiestrogens were administered alone or in combination with mifepristone at doses effective in preventing and/or terminating pregnancy in rats. The objective of the study was to determine whether these drugs influenced uterine concentrations of prostaglandins (PGF and PGE2).Antiestrogens administered alone to ovariectomized rats did not effect uterine PGE2 or PGF concentrations; whereas the combination of anordiol/mifepristone increased uterine PGF concentration, resulting in an increase in the PGF/PGE2 ratio.Mated rats were treated post-coitally for three consecutive days with anordiol, tamoxifen, estradiol and mifepristone alone and with the combination of anordiol/mifepristone and tamoxifen/mifepristone. An increase in uterine PGF concentrations and in the PGF/PGE2 ratio occurred only in anordiol/mifepristone treated group. A decrease in uterine PGE2 concentrations occurred in animals treated with anordiol, tamoxifen and estradiol, resulting in an increase in the PGF/PGE2 ratio.Anordiol (5.0 mg/kg/day) and mifepristone (4.0 mg/kg/day) alone and the combination of anordiol/mifepristone (2.5/1.0 mg/kg/day) administered to pregnant rats on days 7, 8 and 9 of pregnancy induced an increase in PGF levels without affecting uterine PGE2 concentration. The changes in uterine PGF concentrations induced by anordiol and the combination of anordiol/mifepristone resulted in an increase in the PGF/PGE2 ratio.The antiestrogens tested except for ICI 182780 possessed agonist activity when assayed by measuring their capacity to increase the uterine weights in ovariectomized rats. Also, ICI 182789 was the only antiestrogen that did not influence uterine PG concentrations. It can be concluded that ICI 182780 is the only “pure” antiestrogen among those tested.The present results show that antiestrogens and the combination of mifepristone plus anordiol at doses preventing implantation and terminating pregnancy increase uterine PGF and/or decrease PGE2 concentrations, resulting in an alteration of PGF/PGE2 ratio. These findings suggest that there exists a critical balance of PGF to PGE2 concentrations in the uterus required for the normal passage of fertilized ova through the oviduct, initiating implantation of the blastocysts, development of embryos, and maintenance of pregnancy.  相似文献   

11.
The exogenous and endogenous syntheses of prostaglandins (PG's) by the cochlea of adult mongolian gerbils were studied . After incubation of the whole membraneous cochlea with [3H]-arachidonic acid (AA), syntheses of PGF, 6-keto PGF, PGE2, thromboxane (TX) B2 and PGD2 were evidenced in this order. The synthesis of radioactive PG's was almost completely inhibited by incubation with 10−5 M indomethacin. No significant amounts of those PG's were detected by radioimmunoassay (RIA) in the cochlea obtained from animals killed by microwave irradiation at 5.0 kw for 0.8 sec. However, when the homogenate of the whole membraneous cochlea obtained from animals without microwave irradiation was incubated at 37°C for 0–15 min, PGD2, PGE2, PGF2α and 6-keto PGF1α were found to be formed from endogenous AA in the cochlea by RIA. PG's were formed already at 0 time to considerable level (PGD2, PGF2α and 6-keto PGF1α, 90–120 pg/cochlea; PGE2, 370 pg/cochlea), reached to the maximum level (PGD2, PGF2α and 6-keto PGF1α, 170–200 pg/cochlea; PGE2, 500 pg/cochlea) at a 5-min incubation, and then gradually decreased. On the other hand, the amount of TXB2 was lower than the detection limit by RIA (<50 pg/cochlea) even after the incubation. The cochlea was dissected into three parts: organ of Corti + modiolus (OC + M), lateral wall (LW), and cochlear nerve (CN), and then PG's formed by these tissues were determined after a 5-min incubation of the homogenates. In the CN and OC + M, PGE2 was the major PG (100 and 160 pg/tissue, respectively), and the amounts of PGD2, PGF2α and 6-keto PGF1α were about of those of PGE2. In the LW, the amounts of PGD2, PGE2, PGF2α and 6-keto PGF1α were about the same level (70–100 pg/LW).  相似文献   

12.
Bovine articular chondrocytes, cultured as cell suspensions and monolayers, produced prostaglandin (PG) E2 and PGI2 (assayed as 6 keto PGF1α), rather less PGF2α and irregular quantities of thromboxane (Tx) B2. Addition of foetal calf serum to the medium greatly stimulated PG production (a sixfold increase in PGE2 and a twofold increase in 6 keto PGF1α).Prostanoid production by cell suspension grown in serum-free medium generally plateaued after 24 hours. In the presence of 20% foetal calf serum, prostanoid production in long-term monolayer cultures increased during the first 6 days of culture. Levels of PGE2α levels remained high. Indomethacin (10-6M) inhibited chondrocyte PG production both in the presence and absence of added arachidonic acid (10-4M). Prostanoids produced by chondrocytes may play a role in the modulation of cartilage metabolism .  相似文献   

13.

Background

Eicosapentaenoic acid-derived prostaglandin (PG) E3, PGF, and thromboxane (TX) B3 are bioactive lipid mediators which have anti-cancer and anti-inflammatory effects. To exert their effects, PGE3, PGF, and TXB3 must be released to the extracellular space from cells, but the release mechanism has been unclear. We therefore investigated the contribution of ATP-binding cassette transporter C4 (ABCC4), which has been known as a prostanoids efflux transporter, to the release of PGE3, PGF, and TXB3.

Materials and Methods

ATP-dependent transport of PGE3, PGF, and TXB3 via ABCC4 was investigated by using inside-out membrane vesicles prepared from ABCC4-overexpressing HEK293 cells. To evaluate the contribution of ABCC4 to the release of PGE3, PGF, and TXB3, we measured the extracellular and intracellular levels of PGE3, PGF, and TXB3 in A549 cells when we used ABCC4 inhibitors (dipyridamole, MK571, and probenecid) or ABCC4 siRNAs. The quantification of PGE3, PGF, and TXB3 was performed by using liquid chromatography-tandem mass spectrometry.

Results

The apparent Km values for ABCC4-mediated transport were 2.9±0.1 µM for PGE3, 12.1±1.3 µM for PGF, and 11.9±1.4 µM for TXB3 and the ATP-dependent accumulation of PGE3, PGF, and TXB3 into vesicles was decreased by using typical substrates and inhibitors of ABCC4. ABCC4 inhibitors and ABCC4 knockdown showed the reduction of extracellular/intracellular ratio of PGE3 (40–60% of control) and PGF (60–80% of control) in A549 cells.

Conclusions

Our results suggest that PGE3, PGF, and TXB3 are substrates of ABCC4 and ABCC4 partially contributes to the release of PGE3 and PGF.  相似文献   

14.
Mononuclear phagocytes are knwon to play a key role in various phlogistic reactions by synthesizing and releasing products that may potentiate or inhibit inflammatory processes. The expression of these products appears to be dependent on the source of the macrophage population as well as the stimulus employed. We have studied superoxide anion (O2) production as well as the generation of PGE2, PGF, and TXB2 from resident, oil-elicited and thiogylcollate-induced peritoneal macrophages in mice in the presence and absence of chemotactic peptides. Production of O2, occurred only in elicited macrophages stimulated with high concentrations of FMLP or C5a; resident cells stimulated with either of the chemotactic peptides were completely unresponsive. Although resident peritoneal macrophages incubated with chemotactic peptides did not generate O2, these cells did secrete significant levels of PGE2, PGF, and TXB2 in response to C5a. FMLP had no stimulatory effect. Elicited macrophages generated increased levels of PGE2 and PGF when incubated with C5a. However, production of TXB2 was not stimulated. FMLP was inactive in stimulating PGE2, PGF, and TXB2 in all types of macrophages studied. These studies indicate a heterogeneity in the production of inflammatory mediators from various macrophage populations in response to chemotactic factors.  相似文献   

15.
The receptors mediating prostanoid-induced contraction of guinea-pig isolated trachea have been characterised in terms of a recently proposed general classification of prostanoid receptors. Results obtained on the trachea were compared with those obtained on guinea-pig fundus, which contains a sub-type of PGE2-sensitive (EP-) receptor termed the EP1-receptor, and guinea-pig lung strip, which contains a thromboxane-sensitive or TP-receptor. The following agonists were studied, PGE2, PGF2α and the thromboxane-like agonists U-46619 and Wy17186. The antagonists studied were SC-19220 which selectivity blocks EP1-receptors, and AH19437 which selectively blocks TP-receptors. On guinea-pig fundus the rank order of agonist potency was PGE2 > PGF2α > Wy17186 U-46619, and responses to all agonists were antagonised by SC-19220 but not by AH19437. On guinea-pig lung strip the rank order of potency was U-46619 > Wy17186 PGF2α > PGE2 and responses to all agonists tested were blocked by AH19437 but not by SC-19220. On the trachea, the rank order was PGE2 = U-46619 > Wy17186 = PGF2α. SC-19220 antagonised responses to PGE2 and PGF2α, but not those to U-46619 or Wy17186. Conversely, AH19437 antagonised responses to U-46619 and Wy17186 but not those to PGE2 or PGF2α. It is concluded that prostanoid-induced contractions of guinea-pig trachea can be mediated by both EP1- and TP-receptors.  相似文献   

16.
We cultured phagocytic cells derived from the thymic reticulum in order to study the regulation of prostaglandin (PG) production by antiinflammatory or immunostimulating agents. The kinetics of PGE2, 6-keto-PGF and PGF production were measured by specific radioimmunoassays of the supernatants harvested from cells treated with dexamethasone, a steroidal antiinflammatory drug and by two non steroidal inhibitors (indomethacin and sulindac) or by various immunostimulating agents, one of them, RU 41740 is currently being used in humans. Our results revealed that ech of these drugs exerts a differential effect on the PG production, with a striking action on PGE2 synthesis, a lesser effect on 6-keto-PGF production and almost no effect on PGF synthesis. The possible mechanisms responsible for this complex regulation of PG production are discussed.  相似文献   

17.
In view of recent findings which suggest that renal prostaglandins mediate the effect of hypoxia on erythropoietin production, we have studied whether hypoxia is a stimulus for in vitro prostaglandin synthesis. Studies were carried out in rat renal mesangial cell cultures which produce erythropoietin in an oxygen-dependent manner. Production rates of PGE2 and in specified samples also of 6-keto-PGF, as a measure of PGI2, and PGF were determined by radioimmunoassay after incubation at either 20% O2 (normoxic) or 2% O2 (hypoxic) in gas permeable dishes for 24 hrs. Considerable variation in PGE2 production was noted among independent cell lines. PGE2 production appeared to be inversely correlated to the cellular density of the cultures. In addition, PGE2 production was enhanced in hypoxic cell cultures. The mean increase was 50 to 60%. PGF and 6-keto-PGF increased by about the same rate. These results indicate that hypoxia is a stimulus for in vitro prostaglandin production.  相似文献   

18.
Several hours following administration of long acting vaginal suppositories containing 3.0 mg of 15-methyl-PGF for interruption of second trimester pregnancies there is an up to 10-fold increase in endogenous production of PGE2 and PGF before abortion as reflected by gas chromatographic-mass spectrometric determination of the major plasma metabolites of PGE2 and PGF. The data suggest that this increased formation of endogenous prostaglandins contributes to the induced uterine activity during the latter part of the abortion process.  相似文献   

19.
To evaluate the details of the adrenergic stimulation of urinary prostaglandins in man, ten normal volunteers were given various agonists and antagonists. The effect of 4 hour IV infusions of norepinephrine (NE), NE + phentolamine (PHT), NE + phenoxybenzamine (PHB), NE + prazosin (PZ), isoproterenol (ISO), and PHT alone on urinary PGE2 and PGI2 (6 keto PGF) were determined. PGE2 and 6 keto PGF were measured by radioimmunoassay from 4 hour urine samples. NE stimulated both PGE2 (196±40 to 370±84 ng/4 hrs/g creatinine and 6 keto PGF1α(184±30 to 326±36), both p<0.01. In contrast, ISO had no effect on either PGE2 or 6 keto PGF excretion. Alpha blockade with PHT. PHB, or PZ inhibited the NE induced systemic pressor effect. However, the effect of the alpha blockers on the NE induced stimulation of PGE2 and 6 keto PGF varied. PHT did not alter the NE stimulated PGE2 or 6 keto PGF release (370±84 vs. 381±80) PGE2 and (326±50 vs. 315±40) 6 keto PGF, both p>0.2). PHT alone stimulated only 6 keto PGF. PHB and the specific α1 antagonist PZ similarly eliminated the NE induced prostaglandin release. These results suggest that adrenergically mediated urinary prostaglandin release in man is via an alpha receptor with α1 characteristics.  相似文献   

20.
Whole cell preparations of rat stomach corpus, jejunum, and colon were incubated and the released prostaglandin E2 (PGE2), PGF, PGD2, 15 keto-13,14 dihydro PGE2, and 15 keto-13,14 dihydro PGF were measured by combined gas chromatography-mass spectrometry. All regions made PGD2 and possessed a high capacity for producing 15 keto-13,14 dihydro derivatives of both PGE2 and PGF. Hypertonic sucrose solutions resulted in concentration-dependent increases in prostaglandin release, particularly of PGE2 and its metabolite. It is suggested that PG's may play a role in the local effects of luminal hyperosomolarity on digestive tract functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号