首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75275篇
  免费   19649篇
  国内免费   4659篇
  2023年   635篇
  2022年   783篇
  2021年   2517篇
  2020年   3642篇
  2019年   5496篇
  2018年   5521篇
  2017年   5299篇
  2016年   5934篇
  2015年   6994篇
  2014年   7247篇
  2013年   7943篇
  2012年   6555篇
  2011年   5910篇
  2010年   5587篇
  2009年   4135篇
  2008年   3553篇
  2007年   2815篇
  2006年   2585篇
  2005年   2153篇
  2004年   1959篇
  2003年   1732篇
  2002年   1514篇
  2001年   1168篇
  2000年   1018篇
  1999年   797篇
  1998年   474篇
  1997年   435篇
  1996年   413篇
  1995年   359篇
  1994年   361篇
  1993年   249篇
  1992年   425篇
  1991年   364篇
  1990年   318篇
  1989年   312篇
  1988年   238篇
  1987年   191篇
  1986年   183篇
  1985年   202篇
  1984年   192篇
  1983年   140篇
  1982年   126篇
  1981年   100篇
  1980年   83篇
  1979年   99篇
  1978年   89篇
  1977年   80篇
  1976年   82篇
  1975年   86篇
  1974年   91篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The efficient aquisition of nutrients from leaves by insect herbivores increases their nutrient assimilation rates and overall fitness. Caterpillars of the gypsy moth (Lymantria dispar L.) have high protein assimilation efficiencies (PAE) from the immature leaves of trees such as red oak (Quercus rubra) and sugar maple (Acer saccharum) (71–81%) but significantly lower PAE from their mature leaves (45–52%). By contrast to this pattern, both PAE and carbohydrate assimilation efficiencies (CAE) remain high for L. dispar larvae on the mature leaves of poplar (Populus alba × Populus tremula) grown in greenhouse conditions. The present study tests two alternative hypotheses: (i) outdoor environmental stresses cause decreased nutrient assimilation efficiencies from mature poplar leaves and (ii) nutrients in the mature leaves of trees in the poplar family (Salicaceae) remain readily available for L. dispar larvae. When poplar trees are grown in ambient outdoor conditions, PAE and CAE remain high (approximately 75% and 78%, respectively) in L. dispar larvae, in contrast to the first hypothesis. When larvae feed on the mature leaves of species in the Salicaceae [aspen (Populus tremuloides), cottonwood (Populus deltoides), willow (Salix nigra) and poplar], PAE and CAE also remain high (68–76% and 72–92%, respectively), consistent with the second hypothesis. Larval growth rates are strongly associated with protein assimilation rates, and more strongly associated with protein assimilation rates than with carbohydrate assimilation rates. It is concluded that tree species in the Salicaceae are relatively high‐quality host plants for L. dispar larvae, in part, because nutrients in their mature leaves remain readily available.  相似文献   
2.
1. Temperature and oxygen are recognised as the main drivers of altitudinal limits of species distributions. However, the two factors are linked, and both decrease with altitude, why their effects are difficult to disentangle. 2. This was experimentally addressed using aquatic macroinvertebrates; larvae of Andesiops (Ephemeroptera), Claudioperla, (Plecoptera), Scirtes (Coleoptera) and Anomalocosmoecus (Trichoptera), and the amphipod Hyalella in an Ecuadorian glacier‐fed stream (4100–4500 m a.s.l.). The following were performed: (i) quantitative benthic sampling at three sites to determine altitudinal patterns in population densities, (ii) transplants of the five taxa upstream of their natural altitudinal limit to test the short‐term (14 days) effect on survival, and (iii) in situ experiments of locomotory activity as a proxy for animal response to relatively small differences in temperature (5 °C vs. 10 °C) and oxygen saturation (55% vs. 62%). 3. The transplant experiment reduced survival to a varying degree among taxa, but Claudioperla survived well at a site where it did not naturally occur. In the in situ experiment, Scirtes and Hyalella decreased their activity at lower oxygen saturation, whereas Andesiops and Anomalocosmoecus did so at a low temperature. The decrease in activity from a high to a low temperature and oxygen for the five taxa was significantly correlated with their mortality in the transplant experiment. 4. Together the present experiments indicate that even relatively small differences in temperature and oxygen may produce effects explaining ecological patterns, and depending on the taxon, either water temperature or oxygen saturation, without clear interacting effects, are important drivers of altitudinal limits.  相似文献   
3.
4.
5.
6.
7.
An experiment was conducted to investigate the effect of phytase transgenic corn (PTC) on intestinal microflora, and the fate of transgenic DNA and protein in the digesta and tissues of broilers. A total of 160 1-day-old Arbor Acres commercial male broilers were randomly assigned to 20 cages (8 chicks per cage) with 10 cages (replicates) for each treatment. Birds were fed with a diet containing either PTC (54.0% during 1–21 days and 61.0% during 22–42 days) or non-transgenic isogenic control corn (CC) for a duration of 42 days. There were no significant differences (P>0.05) between birds fed with the PTC diets and those fed with the CC diets in the quantities of aerobic bacteria, anaerobic bacteria, colibacillus and lactobacilli, or microbial diversities in the contents of ileum and cecum. Transgenic phyA2 DNA was not detected, but phyA2 protein was detected in the digesta of duodenum and jejunum of broilers fed with the PTC diets. Both transgenic phyA2 DNA and protein fragments were not found in the digesta of the ileum and rectum, heart, liver, kidney, and breast or thigh muscles of broilers fed with the PTC diets. It was concluded that PTC had no adverse effect on the quantity and diversity of gut microorganisms; Transgenic phyA2 DNA or protein was rapidly degraded in the intestinal tract and was not transferred to the tissues of broilers.  相似文献   
8.
To determine the function and specificity in factor IX of the first epidermal growth factor (EGF)-like domain and the eight-amino acid hydrophobic stack encoded by exon C (residues 39-46), these domains were replaced by the corresponding polypeptide regions of factor X and chimeric proteins were produced in human embryo kidney cells. Both chimeras were activated by factor XIa at a rate similar to plasma factor IX and exhibited calcium-dependent fluorescence quenching similar to plasma factor IX. Both chimeras competed equally for binding to the endothelial cell receptor. Our findings make it unlikely that the first EGF-like domain or the hydrophobic stack of factor IX are responsible for the specific binding of factor IX to its endothelial cell receptor.  相似文献   
9.
High Resolution Proton NMR Spectroscopy of Multiple Sclerosis Lesions   总被引:6,自引:1,他引:5  
Abstract: Tissue from postmortem multiple sclerosis and normal control brains was extracted with perchloric acid and analysed using proton NMR spectroscopy. The content of N -acetyl-derived groups (the sum of N -acetylaspartate, acetate, and N -acetylaspartylglutamate) was decreased in multiple sclerosis plaques compared with normal control white matter (mean, 4.36 vs. 6.64 µmol/g wet weight). In normal appearing white matter adjacent to plaques a corresponding decrease was seen, with no change in white matter distant from plaques. A decrease in the content of total creatine was observed in multiple sclerosis plaques in comparison with normal control white matter (mean, 4.64 vs. 6.56 µmol/g wet weight), which correlated strongly with the decrease in N -acetyl-derived groups. No changes in other metabolites such as total choline or myo -inositol were seen. The decreases in content of N -acetyl-derived groups are in agreement with observations from in vivo proton NMR spectroscopy in multiple sclerosis patients. The decrease in total creatine is in contrast to most of the observations made in vivo where total creatine is assumed to be unchanged and metabolite levels are often expressed as a total creatine ratio. The use of a total creatine ratio in vivo could lead to an underestimation of reductions in N -acetylaspartate and an apparent increase in other metabolites in the multiple sclerosis lesion.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号