首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The blood coagulation factor IX(a) binds specifically to a site on endothelial cells with a Kd of 2.0-3.0 nM. A number of previous studies have attempted to define the region(s) of factor IX(a) that mediate this interaction. These studies suggested that there are two regions of factor IX(a), the gamma-carboxyglutamic acid (Gla) domain and the epidermal growth factor like (EGF-like) domains, that mediate high-affinity binding to endothelial cells. Recently, however, the participation of the EGF1 domain has been excluded from the interaction. This indicated that if there was an EGF component of factor IX contributing to the binding affinity, then it must be in the second EGF-like domain. In order to further evaluate this relationship, we performed competitive binding experiments between 125I plasma factor IX and a set of six chimeric proteins composed of portions of factor VII and factor IX. Our data suggest that the high-affinity interaction between factor IX and the endothelial cell binding site is mediated by the factor IX Gla domain and that the factor IX EGF domains are not involved in binding specificity.  相似文献   

2.
We have used chimeras and point mutations of recombinant coagulation factor IX to examine factor IX's specific interaction with bovine endothelial cells. Previously (Toomey, J. R., Smith, K. J., Roberts, H. R., and Stafford, D. W. (1992) Biochemistry 31, 1806-1808), we restricted the region of factor IX responsible for binding to endothelial cells to its Gla domain. Molecular modeling of the Gla domain of factor IX using the coordinates of the Gla domain of bovine prothrombin-(1-145) (Soriano-Garcia, M., Padmanabhan, K., deVos, A. M., and Tulinsky, A. (1992) Biochemistry 31, 2554-2566) reveals two major surface determinants whose sequences differ among factors IX, X, and VII. A chimeric protein comprised of the Gla domain of factor VII with the remainder of the molecule of factor IX did not bind to the endothelial cell binding site. We changed residues 33, 34, 35, 39, and 40 to those of factor IX without restoring endothelial cell binding. Replacement of amino acid residues 3-10 with those of factor IX restored normal binding. With the knowledge that specific binding was localized to the first 11 amino acids, point mutations were made at residues predicted to be on the surface in this region of the factor IX molecule. Changing lysine 5 to alanine (K5A) or valine 10 to lysine (V10K) resulted in loss of binding with total retention of in vitro clotting activity. The lysine 5 to arginine (K5R) mutation also was fully active in vitro but displayed 3-fold tighter binding. In addition to defining the sequence of factor IX necessary for binding to endothelial cells, these results suggest that the binding site is not phospholipid but instead is specific, and in all likelihood, protein.  相似文献   

3.
Previous studies have indicated that Factor IX/IXa interacts in a specific and high affinity manner with a binding site on the endothelial cell surface. In this study, the contributions of the gamma-carboxyglutamic acid-containing (GLA) and growth factor domains to the finding of Factor IX to the endothelium were assessed. While GLA-containing peptides from Factors IX, X, and prothrombin were inhibitors of 125I-Factor IX-endothelial cell binding, the GLA peptide from Factor IX was about 250-800-fold more effective than those from prothrombin and Factor X, respectively. In contrast to its relative efficacy as an inhibitor of Factor IX-cell surface interaction, the Factor IX-GLA peptide neither bound to lipid vesicles nor inhibited Factor IX-lipid interaction. A synthetic peptide comprising the entire first epidermal growth factor (EGF) exon was also an inhibitor of 125I-Factor IX-endothelial cell binding, although it did not interact with lipid vesicles. Experiments with synthetic peptides comprising each of the three loops of the first EGF domain or the entire first EGF region with specific substitutions indicated the importance of determinants in both the first and probably third loops for Factor IX-endothelial interaction. In contrast, the second loop of the first EGF domain and the first loop of the second EGF exon are probably not involved in Factor IX-endothelial interaction based on their inability to block 125I-Factor IX binding to cells. These results indicate that determinants in both the GLA and the first EGF domain contribute to the specific binding of Factor IX to the endothelial cell surface and that structural requirements for Factor IX-cell surface interaction are distinct from those for Factor IX binding to lipids.  相似文献   

4.
Endothelium provides a specific binding site for Factor IX/IXa which can propagate activation of coagulation by promoting Factor IXa-VIII-mediated activation of Factor X. In this report the endothelial cell Factor IX/IXa binding site has been identified and the coagulant function of the receptor blocked. Studies using [3H]Factor IX derivatized with the photoaffinity labeling agent N-succinimidyl-6-(4'-azido-2'-nitrophenylamino)hexanoate (SANPAH) and cultured bovine endothelial cells demonstrated cross-linking to a trypsin-sensitive cell surface protein of Mr approximately equal to 140,000. Immunoprecipitation of metabolically labeled endothelium with Factor IX derivatized with the cleavable cross-linking agent N-succinimidyl(4-azidophenyl)-1,3'-dithiopropionate and antibody to Factor IX demonstrated the endothelial cell origin of the Mr 140,000 cell surface protein. Blockade of the Factor IX/IXa binding protein by covalently linking SANPAH-5-dimethylaminonaphthalene-1-sulfonyl-Glu-Gly-Arg-Factor IXa or SANPAH-Factor IX prevented both specific Factor IXa binding and effective Factor IXa-VIII-mediated activation of Factor X on endothelium. Following extraction of endothelium with detergents, Factor IX/IXa binding activity was solubilized and could be assayed using a polyvinyl chloride plate binding assay. Western blots of cell extracts demonstrated binding of 125I-Factor IX at Mr approximately equal to 140,000 which was blocked by excess Factor IX, but not antisera to Factor VIII, von Willebrand factor, alpha 2-macroglobulin, or epidermal growth factor receptor. These data indicate that endothelium provides a distinct binding site for Factor IX/IXa consisting, at least in part, of a membrane protein which can modulate the coagulant activity of Factor IXa on the cell surface.  相似文献   

5.
During hemostasis, factor IX is activated to factor IXabeta by factor VIIa and factor XIa. The glutamic acid-rich gamma-carboxyglutamic acid (Gla) domain of factor IX is involved in phospholipid binding and is required for activation by factor VIIa. In contrast, activation by factor XIa is not phospholipid-dependent, raising questions about the importance of the Gla for this reaction. We examined binding of factors IX and IXabeta to factor XIa by surface plasmon resonance. Plasma factors IX and IXabeta bind to factor XIa with K(d) values of 120 +/- 11 nm and 110 +/- 8 nm, respectively. Recombinant factor IX bound to factor XIa with a K(d) of 107 nm, whereas factor IX with a factor VII Gla domain (rFIX/VII-Gla) and factor IX expressed in the presence of warfarin (rFIX-desgamma) did not bind. An anti-factor IX Gla monoclonal antibody was a potent inhibitor of factor IX binding to factor XIa (K(i) 34 nm) and activation by factor XIa (K(i) 33 nm). In activated partial thromboplastin time clotting assays, the specific activities of plasma and recombinant factor IX were comparable (200 and 150 units/mg), whereas rFIX/VII-Gla activity was low (<2 units/mg). In contrast, recombinant factor IXabeta and activated rFIX/VIIa-Gla had similar activities (80 and 60% of plasma factor IXabeta), indicating that both proteases activate factor X and that the poor activity of zymogen rFIX/VII-Gla was caused by a specific defect in activation by factor XIa. The data demonstrate that factor XIa binds with comparable affinity to factors IX and IXabeta and that the interactions are dependent on the factor IX Gla domain.  相似文献   

6.
T Davis-Smyth  H Chen  J Park  L G Presta    N Ferrara 《The EMBO journal》1996,15(18):4919-4927
Vascular endothelial growth factor (VEGF) is an angiogenic inducer that mediates its effects through two high affinity receptor tyrosine kinases, Flt-1 and KDR. Flt-1 is required for endothelial cell morphogenesis whereas KDR is involved primarily in mitogenesis. Flt-1 has an alternative ligand, placenta growth factor (PlGF). Both Flt-1 and KDR have seven immunoglobulin (Ig)-like domains in the extracellular domain. The significance and function of these domains for ligand binding and receptor activation are unknown. Here we show that deletion of the second domain of Flt-1 completely abolishes the binding of VEGF. Introduction of the second domain of KDR into an Flt-1 mutant lacking the homologous domain restored VEGF binding. However, the ligand specificity was characteristic of the KDR receptor. We then created chimeric receptors where the first three or just the second Ig-like domains of Flt-1 replaced the corresponding domains in Flt-4, a receptor that does not bind VEGF, and analyzed their ability to bind VEGF. Both swaps conferred upon Flt-4 the ability to bind VEGF with an affinity nearly identical to that of wild-type Flt-1. Furthermore, transfected cells expressing these chimeric Flt-4 receptors exhibited increased DNA synthesis in response to VEGF or PlGF. These results demonstrate that a single Ig-like domain is the major determinant for VEGF-PlGF interaction and that binding to this domain may initiate a signal transduction cascade.  相似文献   

7.
Factor IX Alabama is a factor IX variant in which a glycine has been substituted for Asp47 in the first epidermal growth factor (EGF) domain. The structural defect in factor IX Alabama results in a molecule with 10% of normal coagulant activity. The interactions of immunoaffinity-purified factor IX Alabama with its activator, cofactors, and substrate have been investigated to determine the functional defect in the variant. Factor IX Alabama is activated by factor XIa/calcium at near normal rates. Calcium fluorescence-quenching experiments indicate that high affinity calcium binding in the first EGF domain is not altered in factor IX Alabama. The active site of factor IXa Alabama is fully competent to activate factor X in the absence of calcium when using polylysine as a surface to catalyze the reaction. Factor IXa Alabama has only 64% of normal factor IXa activity in the presence of 300 microM CaCl2 in the polylysine-catalyzed system although apparent high affinity calcium binding constants are similar. Factor IXa Alabama has 52-60% of normal activity in a calcium/phospholipid vesicle system. The addition of factor VIIIa to the phospholipid vesicle system decreases the relative rate of factor IXa Alabama to 18-19% of normal. Three-dimensional computer-aided models of the first EGF domain of normal factor IX and factor IX Alabama indicate no major structural alterations resulting from the glycine substitution for Asp47. The model of the first EGF domain of normal factor IX predicts a calcium-binding site involving Asp47, Asp49, Asp64, and Asp65. Our binding data, however, indicate that Asp47 is not necessary to form the high affinity binding site. We conclude that Asp47 in normal factor IX coordinates to the bound calcium, inducing a conformational change in the molecule essential for proper interaction with factor X and factor VIIIa.  相似文献   

8.
L H Huang  H Cheng  A Pardi  J P Tam  W V Sweeney 《Biochemistry》1991,30(30):7402-7409
Factor IX is a blood clotting protein that contains three regions, including a gamma-carboxyglutamic acid (Gla) domain, two tandemly connected epidermal growth factor like (EGF-like) domains, and a serine protease region. The protein exhibits a high-affinity calcium binding site in the first EGF-like domain, in addition to calcium binding in the Gla domain. The first EGF-like domain, factor IX (45-87), has been synthesized. Sequence-specific resonance assignment of the peptide has been made by using 2D NMR techniques, and its secondary structure has been determined. The protein is found to have two antiparallel beta-sheets, and preliminary distance geometry calculations indicate that the protein has two domains, separated by Trp28, with the overall structure being similar to that of EGF. An NMR investigation of the calcium-bound first EGF-like domain indicates the presence and location of a calcium binding site involving residues on both strands of one of the beta-sheets as well as the N-terminal region of the peptide. These results suggest that calcium binding in the first EGF-like domain could induce long-range (possibly interdomain) conformational changes in factor IX, rather than causing structural alterations in the EGF-like domain itself.  相似文献   

9.
Vascular endothelial growth factor (VEGF165) and its receptor KDR (kinase insert domain-containing receptor) are central regulators of blood vessel formation. We herein report a KDR-binding protein we have isolated in the venom of eastern cottonmouth (Agkistrodon piscivorus piscivorus). Sequence analysis revealed the isolated KDR-binding protein (designated KDR-bp) is identical to Lys49-phosholipase A2 (Lys49PLA2), an inactive PLA2 homologue with strong myotoxicity, in which Lys49 substitutes Asp49, a key residue for binding the essential cofactor Ca2+. KDR-bp binds to the extracellular domain of KDR with subnanomolar affinity. KDR-bp also binds to a lesser extent with Flt-1 and IgG but not to other receptors with similar immunoglobulin-like domain structures such as platelet-derived growth factor receptor alpha. The interaction between KDR-bp and KDR was blocked by VEGF165, and KDR-bp specifically inhibited VEGF165-stimulated endothelial cell proliferation, indicating KDR-bp is an antagonistic ligand for KDR. Lys49PLA2s from another snake venom were found to exhibit similar receptor binding properties to KDR-bp. This is the first report to demonstrate that an exogenous factor antagonizes VEGF and its receptor system. Our observation offers further insight into the as yet unknown molecular mechanism of myotoxic activity of snake venom Lys49PLA2s. Furthermore, KDR-bp would make a valuable tool for studying the structure and function of KDR, such as that expressed on skeletal muscle cells.  相似文献   

10.
The binding of factor IX to cultured bovine endothelial cells was characterized using isolated domains of bovine factor IX. An NH2-terminal fragment that consists of the gamma-carboxyglutamic acid (Gla) region linked to the two epidermal growth factor (EGF)-like domains bound to the endothelial cells with the same affinity as intact factor IX, indicating that the serine protease part of factor IX is not involved in binding. This fragment also inhibited the factor IXa beta'-induced clotting of plasma at a concentration that would suggest a competition for phospholipid binding sites. However, after proteolytic removal of the Gla region from the fragment, the two EGF-like domains inhibited clotting almost as effectively, suggesting a direct interaction between this part of the molecule and the cofactor, factor VIIIa. Using affinity-purified Fab fragments against the Gla region, the EGF-like domains, and the serine protease part, it was observed that the serine protease part of the molecule undergoes a large conformational change upon activation, whereas the Gla region and the EGF-like domains appear to be unaffected. All three classes of Fab fragments were equally efficient as inhibitors of the factor IXa beta'-induced clotting reaction. Part of factor Va and factor VIIIa have significant sequence homology to a lectin. We therefore investigated the effect on in vitro clotting of the recently identified unique disaccharide Xyl alpha 1-3Glc, that is O-linked to a serine residue in the NH2-terminal EGF-like domain of human factor IX (Hase, S., Nishimura, H., Kawabata, S.-I., Iwanaga, S., and Ikenaka, T. (1990) J. Biol. Chem. 265, 1858-1861). However, no effect on blood clotting was observed in the assay system used. Our results are compatible with a model in which the serine protease part provides the specificity of the binding of factor IXa to factor VIIIa-phospholipid, but that the EGF-like domain(s) also contributes to the interaction of the enzyme with its cofactor.  相似文献   

11.
Bovine brain-derived growth factor (BDGF) is very similar to endothelial cell growth factor and brain-derived acidic fibroblast growth factor in terms of pI (5.7) and molecular weight (approximately 17,000). BDGF has a wide spectrum of cell specificity, including bovine aorta endothelial cells and Swiss mouse 3T3 cells. BDGF stimulates the phosphorylation of a 135-kDa protein in plasma membranes of 3T3 cells. The optimal concentration for stimulation of phosphorylation is close to the Kd of 125I-BDGF binding to receptor, suggesting that the BDGF-stimulated 32P-labeled 135-kDa protein may be the BDGF receptor. The alkaline stability of this 32P-labeled 135-kDa phosphoprotein and phosphoamino acid analysis of the acid hydrolysates indicate that the phosphorylation occurs at tyrosine residues. The molecular size of BDGF receptor is estimated as approximately 135 kDa by cross-linking 125I-BDGF to its receptor in 3T3 cells, using a bifunctional reagent, ethylene glycolbis(succinimidylsuccinate). Both BDGF-stimulated phosphorylation and 125I-BDGF binding to receptor can be inhibited by protamine. These results suggest that the BDGF receptor is a 135-kDa protein which is associated with a protein tyrosine kinase activity.  相似文献   

12.
It has been suggested that epidermal growth factor-like (EGF-like) domains, containing conserved carboxylate residues, are responsible for the high-affinity calcium binding exhibited by a number of vitamin K-dependent plasma proteins involved in the control of the blood coagulation cascade. These include the procoagulant factors IX and X, and the anticoagulants protein C and protein S. To test this hypothesis we have expressed the first EGF-like domain from human factor IX (residues 46-84) using a yeast secretion system, and examined calcium binding to the domain. Using 1H-NMR to measure a calcium-dependent shift assigned to Tyr69 we have detected a high-affinity calcium binding site (Kd = 200-300 microM). We suggest that other EGF-like domains of this type may have similar calcium binding properties. In addition, we have completely assigned the aromatic region of the NMR spectrum by NOESY and COSY analysis, and have used these data to discuss the effect of calcium and pH on the conformation of the domain with reference to a model based on the structure of human EGF.  相似文献   

13.
Choline binding proteins are virulence determinants present in several Gram-positive bacteria. Because anchorage of these proteins to the cell wall through their choline binding domain is essential for bacterial virulence, their release from the cell surface is considered a powerful target for a weapon against these pathogens. The first crystal structure of a choline binding domain, from the toxin-releasing enzyme pneumococcal major autolysin (LytA), reveals a novel solenoid fold consisting exclusively of beta-hairpins that stack to form a left-handed superhelix. This unique structure is maintained by choline molecules at the hydrophobic interface of consecutive hairpins and may be present in other choline binding proteins that share high homology to the repeated motif of the domain.  相似文献   

14.
While a role has been ascribed to the gamma-carboxyglutamate (Gla) residues in vitamin K-dependent coagulation proteins and the enzyme catalyzing this posttranslational modification has been identified and partially characterized, both the functional significance of a second posttranslationally synthesized amino acid found in these proteins, beta-hydroxyaspartate (Hya), and the aspartyl beta-hydroxylating enzyme remain to be determined. We now report that inhibitors of 2-ketoglutarate-dependent dioxygenases, such as dipyridyl, o-phenanthroline, and pyridine 2,4-dicarboxylate, block hydroxylation of Asp64 in recombinant factor IX molecules produced in three different mammalian expression systems. This hydroxylation was not inhibited by the specific copper chelators 2,9-dimethylphenanthroline or D-penicillamine. The Gla levels in these proteins were unaffected by these compounds and demonstrate that carboxylation proceeds independently of hydroxylation. Using these Hya-deficient recombinant factor IX molecules we demonstrate that this residue does not play a significant role in factor IX binding to endothelial cells under equilibrium conditions. From additional binding studies we have concluded that the Gla domain of factor IX is a major cell binding domain of factor IX. Furthermore, in contrast to studies demonstrating a marked loss of one-stage clotting activity in recombinant factors IX following site-directed mutations of Asp64 to neutral or basic residues (Rees, D. J. G., Jones, I. M., Handford, P. A., Walter, S. J., Esnouf, M. P., Smith, K. J., and Brownlee, G. J. (1988) EMBO J. 7, 2053-2061), we have not found a decrease of one-stage clotting activity with Hya-deficient factor IX. Hya-deficient proteins produced in this manner may prove to be more appropriate to elucidate the function of Hya than those produced by site-directed mutagenesis.  相似文献   

15.
Binding of coagulation factors IX and X to the endothelial cell surface   总被引:13,自引:0,他引:13  
Bovine coagulation factors IX and X bind to independent sites on bovine aortic endothelial cells. Binding studies with cells maintained serum-free showed that there are at least two classes of binding sites for factor IX and factor X with a dissociation constant of 4.9 x 10(-9) M and 2.1 x 10(-8) M for the respective high affinity sites. Ca+2 was required for specific binding and was reversed by addition of EDTA or EGTA. Competition experiments showed that factor IX and factor IXa bind to the same sites, which are different from the factor X binding sites. Neither binding of factor IX or factor X is inhibited by addition of prothrombin or protein C. Indirect immunofluorescence of factor IX indicated that binding was diffuse on the cell surface.  相似文献   

16.
Coagulation factor IX is thought to circulate in the blood as an inactive zymogen before being activated in the coagulation process. The effect of coagulation factor IX on cells is poorly understood. This study aimed to evaluate the effects of intact coagulation factor IX and its cleavage fragments on cell behavior. A431 cells (derived from human squamous cell carcinoma), Pro5 cells (derived from mouse embryonic endothelial cells), Cos7 cells, and human umbilical vein endothelial cells were utilized in this study. The effects of coagulation factor IX and its cleavage fragments on cell behavior were investigated in several types of experiments, including wound‐healing assays and modified Boyden chamber assays. The effect of coagulation factor IX depended on its processing; full‐length coagulation factor IX suppressed cell migration, increased adhesion to matrix, and enhanced intercellular adhesion. In contrast, activated coagulation factor IX enhanced cell migration, suppressed adhesion to matrix, and inhibited intercellular adhesion. An activation peptide that is removed during the coagulation process was found to be responsible for the activity of full‐length coagulation factor IX, and the activity of activated coagulation factor IX was localized to an EGF domain of the coagulation factor IX light chain. Full‐length coagulation factor IX has a sedative effect on cells, which is counteracted by activated coagulation factor IX in vitro. Thus, coagulation factor IX may play roles before, during, and after the coagulation process.  相似文献   

17.
beta-Hydroxyaspartic acid is a post-translationally modified amino acid found in a number of plasma proteins in a domain homologous to epidermal growth factor. Its presence can be correlated with a high affinity Ca2+ binding site, with a dissociation constant of 10-100 microM. We describe a system for the expression of human coagulation factor IX in dog kidney cells in tissue culture, in which the post-translational modifications and the biochemical activity are indistinguishable from factor IX synthesized in vivo. This system has been used to express eight different point mutations of human factor IX in the first epidermal growth factor domain in order to study the role of beta-hydroxyaspartate at residue 64, and the adjacent carboxylate residues at positions 47, 49 and 78. We conclude that this domain is essential for factor IX function and suggest that Ca2+ binds to carboxylate ions in this domain and stabilizes a conformation necessary for the interaction of factor IXa with factor X, factor VIII and phospholipid in the next step of the clotting cascade.  相似文献   

18.
Vitamin-K-dependent plasma proteins contain a highly conserved propeptide sequence located between the classical hydrophobic leader sequence and the N-terminus of the mature protein. This acts as a recognition sequence for the vitamin-K-dependent carboxylase which catalyses the conversion of specific glutamate residues to gamma-carboxyglutamate (Gla) residues in the adjacent Gla domain. Protein engineering of the 18 residue propeptide from human factor IX has highlighted the importance of residues -16Phe and -10Ala with respect to carboxylase recognition. In addition, studies of haemophilia B patients have shown that C-terminal propeptide residues -4Arg and -1Arg are required for proteolysis of the propeptide from the mature protein. To extend these previous studies we have introduced two novel mutations into the propeptide of human factor IX at positions -17(Val----Asp) and -6(Leu----AsP), and studied the effect of these changes on gamma-carboxylation and proteolytic processing. Both mutations reduce the expression of a calcium-dependent epitope in the Gla domain; however, only -6Leu----Asp shows reduced binding to barium sulphate. In addition, this latter mutation prevents proteolytic processing of the propeptide. These data support the current hypothesis that the propeptide contains two recognition elements: one for carboxylase recognition located towards the N-terminus, and one for propeptidase recognition located near the C-terminus.  相似文献   

19.
The binding of Factor IX to membranes during blood coagulation is mediated by the N-terminal gamma-carboxyglutamic acid-rich (Gla) domain, a membrane-anchoring domain found on vitamin K-dependent blood coagulation and regulatory proteins. Conformation-specific anti-Factor IX antibodies are directed at the calcium-stabilized Gla domain and interfere with Factor IX-membrane interaction. One such antibody, 10C12, recognizes the calcium-stabilized form of the Gla domain of Factor IX. We prepared the fully carboxylated Gla domain of Factor IX by solid phase peptide synthesis and crystallized Factor IX-(1-47) in complex with Fab fragments of the 10C12 antibody. The overall structure of the Gla domain in the Factor IX-(1-47)-antibody complex at 2.2 A is similar to the structure of the Factor IX Gla domain in the presence of calcium ions as determined by NMR spectroscopy (Freedman, S. J., Furie, B. C., Furie, B., and Baleja, J. D. (1995) Biochemistry 34, 12126-12137) and by x-ray crystallography (Shikamoto, Y., Morita, T., Fujimoto, Z., and Mizuno, H. (2003) J. Biol. Chem. 278, 24090-24094). The complex structure shows that the complementarity determining region loops of the 10C12 antibody form a hydrophobic pocket to accommodate the hydrophobic patch of the Gla domain consisting of Leu-6, Phe-9, and Val-10. Polar interactions also play an important role in the antibody-antigen recognition. Furthermore, the calcium coordination network of the Factor IX Gla domain is different than in Gla domain structures of other vitamin K-dependent proteins. We conclude that this antibody is directed at the membrane binding site in the omega loop of Factor IX and blocks Factor IX function by inhibiting its interaction with membranes.  相似文献   

20.
Factor XI is the zymogen of a dimeric plasma protease, factor XIa, with two active sites. In solution, and during contact activation in plasma, conversion of factor XI to factor XIa proceeds through an intermediate with one active site (1/2-FXIa). Factor XIa and 1/2-FXIa activate the substrate factor IX, with similar kinetic parameters in purified and plasma systems. During hemostasis, factor IX is activated by factors XIa or VIIa, by cleavage of the peptide bonds after Arg145 and Arg180. Factor VIIa cleaves these bonds sequentially, with accumulation of factor IX alpha, an intermediate cleaved after Arg145. Factor XIa also cleaves factor IX preferentially after Arg145, but little intermediate is detected. It has been postulated that the two factor XIa active sites cleave both factor IX peptide bonds prior to releasing factor IX abeta. To test this, we examined cleavage of factor IX by four single active site factor XIa proteases. Little intermediate formation was detected with 1/2-FXIa, factor XIa with one inhibited active site, or a recombinant factor XIa monomer. However, factor IX alpha accumulated during activation by the factor XIa catalytic domain, demonstrating the importance of the factor XIa heavy chain. Fluorescence titration of active site-labeled factor XIa revealed a binding stoichiometry of 1.9 +/- 0.4 mol of factor IX/mol of factor XIa (Kd = 70 +/- 40 nm). The results indicate that two forms of activated factor XI are generated during coagulation, and that each half of a factor XIa dimer behaves as an independent enzyme with respect to factor IX.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号