首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. We measured respiration of the larvae of aquatic insects from streams in the Ecuadorian Andes in relation to oxygen saturation at 5, 8, 11, 14 and 17 °C. Polycentropus (Polycentropodidae), Lachlania (Oligoneuriidae), Anchytarsus (Ptilodactylidae) and Anacroneuria (Perlidae) represented genera absent from the highest altitudes, reaching 2720, 2930, 3120, 3450 m a.s.l., respectively, while Claudioperla (Gripopterygidae) and Anomalocosmoecus (Limnephilidae) occurred only above 2900 m a.s.l. Our purpose was to determine whether natural altitudinal limits were reflected in physiological critical points on respiration versus oxygen curves and by the effect of temperature on the ability to oxy‐regulate. 2. For all six genera, respiration was affected by oxygen saturation and temperature. Respiration (mg O2 g−1 AFDM h−1) at 70% oxygen saturation (Michaelis–Menten fitted) varied from 2.6 to 7.6 between genera at 17 °C, and from 1.3 to 2.5 at 5 °C. Q10 values for this temperature interval ranged 1.5–2.9 (mean 2.3). The two “high‐altitude” genera had higher respiration rates at low temperature and oxygen saturation, and their respiration rate saturated at lower temperatures, than three of the four “low‐altitude” genera. 3. The oxy‐regulatory capacity (critical points and initial decrease in respiration versus oxygen regressions) varied among genera and was affected by temperature. Lachlania, Claudioperla and Anomalocosmoecus had a higher ability to oxy‐regulate at low than at high temperatures, Anacroneuria was not clearly affected by temperature, while Polycentropus and Anchytarsus had a greater oxy‐regulatory capacity at high than at low temperature. These results indicate that the ability to oxy‐regulate is related to the temperature (altitude) at which species naturally occur. 4. Upper altitudinal limits of the six genera were not reflected in their respiratory performance, because all genera had critical minima of temperature and oxygen saturation much lower than those occurring at the limits of their natural distribution. So, the altitudinal limit could not be attributed to absolute short‐term physiological tolerance of low temperature and oxygen concentration. 5. Multiple regressions (based on respiration experiments and previously obtained relationships between water temperature, oxygen saturation and altitude) were used to predict how respiration rates should vary with altitude. At the upper limit of the four “low‐altitude” genera, respiration rates were 50–68% of those predicted at the centre of the range. With an arbitrary increase of 400 m above the actual limit, the effect of temperature would be a 13% decrease, and that of oxygen a 2% decrease, in respiration rate of Polycentropus, Lachlania and Anacroneuria, while respiration in Anchytarsus would be reduced by 5% by both factors. 6. It seems that, while the immediate decrease in respiration with increased altitude is caused mainly by a decrease in temperature, the long‐term survival of a species at given altitudes might be more affected by oxygen saturation. Further quantitative and long‐term studies on survival and recruitment in populations and communities are needed to determine the importance of temperature and oxygen for altitudinal limits of aquatic insects.  相似文献   

2.
Jacobsen D 《Oecologia》2008,154(4):795-807
The objective of this study was to explore the altitudinal decrease in local richness of stream macroinvertebrates. I compared the explicatory power of a mid-domain effect (MDE) null model and a number of selected contemporary ecological variables, with a special emphasis on the altitude-mediated decrease in temperature and oxygen availability as possible driving factors for the observed pattern. Benthic macroinvertebrates were sampled at 30 stream sites between 2,600 and 4,000 m a.s.l. in northern Ecuador. All four measures of local richness (total number of taxa, taxa in Surber samples, Fisher’s α index and rarefied richness) decreased with increasing altitude. The MDE null model, water temperature and dissolved oxygen also decreased with altitude, while other measured variables were uncorrelated with altitude. Minimum oxygen saturation had the highest explanatory power of the density-corrected Fisher’s α and rarefied richness (R = 0.48 and 0.52, respectively), but also minimum temperature (R = 0.48 and 0.41) and the MDE null model (R = 0.48 and 0.46) correlated significantly. Multiple regression analyses using several predictive variables showed that oxygen saturation had the greatest and only significant effect on density-corrected richness. The relationship between richness and oxygen corrected for the effect of altitude (using analyses of double residuals) was significant, whereas that of richness versus temperature was not. The results indicate that the decrease in richness with increasing altitude is mainly caused by a decrease in oxygen saturation rather than by a decrease in temperature. Levels of oxygen saturation such as those found at high altitudes do not appear to be lethal to any species, but could affect macroinvertebrates through long-term, sub-lethal effects. I suggest that low oxygen availability may limit biodiversity at high altitudes not only in the aquatic, but also in the terrestrial environment. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
We studied the diet of 50 individuals of Hyalella sp. collected in the karstic headwaters of a high‐altitude Andean river (3817 m a.s.l. Peru) in four different habitats: macrophytes, bryophytes, leaf litter, and layers of travertine. The gut content analysis showed a dominance of fine particulate organic matter (FPOM) in most habitats – layers of travertine (69.5%), Myriophylum (58.5%) and bryophytes (56.8%) – except for individuals collected in leaf litter where coarse particulate organic matter (CPOM) represented 68% of gut content, which indicates a high trophic flexibility of Hyalella sp. Likewise, in an experiment with feeding chambers in situ during three days, twenty individuals of Hyalella sp. presented a higher consumption of leaf litter of native species (Polylepis sp.) (0.025 mg/day) than those of an introduced species (Eucalyptus globulus) (0.008 mg/day). (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Field studies of respiration in stream insects are few in comparison with laboratory studies. To evaluate the influence of temperature and oxygen along altitudinal gradients we measured the respiration rate of fully acclimatized larval Trichoptera, Plecoptera and Ephemeroptera under similar field conditions in streams from 400 to 3800 m above sea level in tropical Ecuador. Mean active respiration rates of the animals at 3800 m were approximately half of those at 400 m. Trichoptera showed a slightly larger difference in respiration with altitude than Ephemeroptera. Comparative respiration measurements at 100 and 50% oxygen saturation indicated that highland animals reduced their oxygen uptake more than their counterparts in the lowland when oxygen availability decreased. The temperature response of respiration calculated between the insect assemblages at different altitudes showed a mean assemblage Q10−value of 1.50. Trichopteran larvae had a slightly stronger temperature response (Q10 of 1.68) than ephemeropterans (Q10 of 1.30). These community Q10-values are considerably lower than the mean value of 2.36 found in single species in the laboratory. The weak community-wide response of respiration to temperature in tropical streams is probably due to full acclimatization of the component species to stable and narrow temperature ranges. Adaptations to the low oxygen availability at high altitude probably consist of a suite of genetic physiological and behavioural features.  相似文献   

5.
1. A study on glacial stream ecosystems was carried out in six regions across Europe, from Svalbard to the French Pyrenees. The main aim was to test the validity of the conceptual model of 38 with regard to the zonation of chironomids of glacier‐fed rivers along altitudinal and latitudinal gradient. 2. Channel stability varied considerably, both on the latitudinal and altitudinal scale, being lowest in the northern regions (Svalbard, Iceland and Norway) and the Swiss Alps. Water temperature at the upstream sites was always <2 °C. 3. There was a prominent difference in taxonomic richness between the Alpine and the northern European regions, with a higher number of taxa in the south. In all regions, the chironomid community was characterized by the genus Diamesa and the subfamily Orthocladiinae. Of a total of 63 taxa recorded, two (Diamesa bertrami and Orthocladius frigidus) were common in all the regions except Svalbard. 4. On the basis of cluster analysis, seven distinct groups of sites were evident amongst glacial‐fed systems of the five regions (Pyrenees excluded). This classification separated the glacier‐fed streams on geographical, latitudinal and downstream gradients. 5. Canonical Correspondence Analysis (CCA) of environmental variables was carried out using 41 taxa at 105 sites. Slope, water depth, distance from source, water temperature and the Pfankuch channel stability index were found to be the major explanatory environmental variables. The analysis separated Diamesinae and typical upstream orthoclads from the other chironomids by low temperature and high channel instability. 6. In all six regions, Diamesa was present closest to the glacier. Within 200 m of the glacier snout, other genera of Diamesinae were found together with Orthocladiinae. Pioneer taxa like Diamesa species coexisted with later colonizers like Eukiefferiella minor/fittkaui in relatively unstable channels. 7. The longitudinal succession of chironomid assemblages across altitudinal and latitudinal gradients in glacial streams followed the same pattern, with similar genera and groups of species. The general aspects of the conceptual model of 38 were supported. However, Diamesa species have wider temperature limits than predicted and other Diamesinae as well as Orthocladiinae colonize metakryal habitats.  相似文献   

6.
The aim of the study was to map the distribution of Acacia senegal and its infraspecific taxa in Uganda and predict its suitable range of occurrence based on climatic factors. The distribution of the infraspecific taxa was analysed for richness, diversity, turnover and reserve selection. Regression analysis was performed to understand the relationship between distribution of the species and climatic variables. Georeferenced species occurrence points were superimposed over temperature and vapour maps. Areas with highest taxa richness, diversity and turnover were mapped and found in the Lake Kyoga basin. The species shows preference for the northern region of the study area with dissimilar climatic pattern from the southern region and the superimposition supported findings. Variety kerensis exhibited narrower climatic, altitudinal and distribution range preference. Temperature seasonality, maximum temperature of warmest month, temperature annual range, mean temperatures of warmest and driest quarters had the highest coefficients of determination (r2 > 0.7) hence most important in influencing species distribution. The most appropriate locations for in situ conservation and for germplasm collection to ensure maximum diversity is secured are found in Wabisi‐Wajala, Kiula, Kyalubanga, Bajo, Kasagala, Kabwika‐mujwalanganda, Maruzi, Moroto and Napak Central Forest Reserves. The study recommends ecological studies to understand status of A. senegal.  相似文献   

7.
Numerous species of the genus Polylepis form the highest treeline in the world, with striking dissimilarities in their upper altitudinal limits. The commonly accepted hypothesis is that growth at a treeline is limited by temperature. Here, using in situ records of various morphological and ecophysiological traits, we aimed to identify other factors influencing altitudinal distribution of three congeneric species from the dry tropical Andes: Polylepis rugulosa, Polylepis tarapacana and Polylepis tomentella. While P. tarapacana and P. tomentella reach their altitudinal limit at around 5000 m asl, P. rugulosa does not thrive above 4300 m, but precipitation is markedly lower in its distribution area. The three species responded to altitude by a change of morphological (e.g. decreased tree height and leaf size) and ecophysiological (e.g. decrease of transpiration rate, nutrient concentration or enrichment in the 13C isotope) traits, and this response was generally more pronounced in P. rugulosa. In comparison with P. tarapacana and P. tomentella, P. rugulosa displayed higher transpiration rates. Waxes from the abaxial (stomatous) leaf side of P. rugulosa were most strongly enriched in 13C. Furthermore, leaves of all species studied here had exceptionally low N and P concentrations. Trade-offs linked to changes in leaf area (e.g. bigger leaves, higher photosynthetic capacity but elevated transpiration) seem to drive differentiation and adaptations to altitude among these three congeneric species. We hypothesize that, while the upper distribution limit of P. tarapacana and P. tomentella is largely driven by low temperature, water is an important additional factor controlling the altitudinal distribution of P. rugulosa. Our results suggest that water stress needs to be taken into account among the factors shaping the altitudinal distribution of tropical treeline species.  相似文献   

8.
Crop residues returned to the soil are important for the preservation of soil quality, health, and biodiversity, and they increase agriculture sustainability by recycling nutrients. Sugarcane is a bioenergy crop that produces huge amounts of straw (also known as trash) every year. In addition to straw, the ethanol industry also generates large volumes of vinasse, a liquid residue of ethanol production, which is recycled in sugarcane fields as fertilizer. However, both straw and vinasse have an impact on N2O fluxes from the soil. Nitrous oxide is a greenhouse gas that is a primary concern in biofuel sustainability. Because bacteria and archaea are the main drivers of N redox processes in soil, in this study we propose the identification of taxa related with N2O fluxes by combining functional responses (N2O release) and the abundance of these microorganisms in soil. Using a large‐scale in situ experiment with ten treatments, an intensive gas monitoring approach, high‐throughput sequencing of soil microbial 16S rRNA gene and powerful statistical methods, we identified microbes related to N2O fluxes in soil with sugarcane crops. In addition to the classical denitrifiers, we identified taxa within the phylum Firmicutes and mostly uncharacterized taxa recently described as important drivers of N2O consumption. Treatments with straw and vinasse also allowed the identification of taxa with potential biotechnological properties that might improve the sustainability of bioethanol by increasing C yields and improving N efficiency in sugarcane fields.  相似文献   

9.
1. The solubility of oxygen in water increases with decreasing temperature. This has led to a general perception of cold, high mountain streams as more oxygen rich than warmer lowland streams, and that macroinvertebrates inhabiting high altitude streams have had no need to adapt to critical oxygen conditions. However, this fails to take into account that oxygen solubility declines with decreasing atmospheric pressure, which may be of importance at high altitudes. 2. Based on samples of macroinvertebrate benthos and in situ measurements of respiratory oxygen demand of macroinvertebrates in small streams from sea level to 4000 m a.s.l. in Ecuador, we determined predicted oxygen availability, oxygen demand and macroinvertebrate assemblage structure along this wide altitudinal gradient. 3. We show that the predicted oxygen availability at 4000 m a.s.l. is only one fifth of that at sea level, whereas the mean weight‐specific respiratory rate of macroinvertebrates declined by only 50%, from 400 to 3800 m. We suggest that this disproportionately large gap between availability and demand of oxygen at high altitudes may imply a potential oxygen deficiency for the fauna, and we discuss how oxygen deficiency can be expected to affect macroinvertebrates in high altitude streams. 4. Finally, we present preliminary data on the predicted response to oxygen deficiency of macroinvertebrate assemblages in high altitude streams. Compared with lowland streams, assemblages in natural high altitude streams include relatively few groups normally regarded as oxygen‐sensitive. Nevertheless, high altitude assemblages react more strongly to lowering of oxygen saturation, and are thus more sensitive to organic pollution. 5. Oxygen deficiency has been overlooked completely in studies of the altitudinal distribution of species and aquatic communities. We argue that oxygen deficiency may be a potentially important factor, and that more focus on this topic is likely to produce significant new insights in aquatic community ecology.  相似文献   

10.
  • Steep climatic gradients boost morphological and physiological adjustments in plants, with consequences on performance. The three principal woody species of the Sierras Grandes Mountains of central Argentina have marked differences in sapling performance along their altitudinal distribution. We hypothesize that the steep gradient of climatic conditions across the species’ altitudinal distribution promotes trait differences between populations of different altitudes that are inherited by the following generation.
  • Seeds from different altitudes were exposed to three temperature regimes to assess differential germination responses. Saplings were then transplanted to a greenhouse to assess possible variations in attributes and performance after 18 months.
  • The three species showed differences in germination responses to temperature among altitudes and/or in sapling attributes and performance. In Maytenus boaria and Escallonia cordobensis, germination success was higher under high temperatures for the highest‐altitude, whereas lower temperatures boosted germination of the lowest altitudes. Polylepis australis showed no differences in germination among temperature treatments. In the greenhouse, saplings of the three species from intermediate altitudes showed high performance, whereas the upper and lower populations seemed to be adjusted to tolerating more stressful conditions (i.e., lower temperatures at the upper end and water stress at the lower end), showing lower performance toward both altitudinal limits.
  • These patterns agree with those described for saplings growing under field conditions, suggesting adjustments in response to environmental changes undergone by populations along the altitudinal range. The marked adjustments of populations to the local environment suggest a potentially high impact of climatic change on species distribution.
  相似文献   

11.
Benthic invertebrate communities have been poorly studied in Andean streams apart from the Patagonian region. The primary objective of this work was to analyse the faunal composition at three different altitudes and to observe whether there were differences in aquatic insect community structure at spatial and temporal scales. Physicochemical variables were measured on a monthly basis. Sixteen families were found, the most frequent and abundant taxa being Massartellopsis (Ephemeroptera), Andesiops (Ephemeroptera), Metrichia neotropicalis (Trichoptera), Cailloma lucidula (Trichoptera), Austrelmis (Coleoptera), and the Chironomidae (Diptera). There was a change in benthic composition associated with land use and with the diminution of water quality from the headwaters to the mouth of the system. The middle reach was a transitional area where headwater species coexisted with species characteristic of the lower reach, with Austrelmis and the family Chironomidae being the most abundant elements.  相似文献   

12.
The objective of this study was to analyze the spatial and temporal dynamics of Chironomidae larvae assemblages in a subtropical mountain river basin of northwestern Argentina. We hypothesized that they would respond to (1) environmental changes along the altitudinal gradient in the Yungas forests; (2) environmental changes caused by spates (e.g., increased discharge or sediment transportation). We sampled five sites along an altitudinal gradient of ca. 1,500 m (from 680 to 2,170 m) during low-water and high-water period for 2 years. The Chironomidae larvae assemblages varied along the altitudinal gradient and between sampling periods based on an indicator species analyses and an ordination analyses (NMDS). The best indicator for high altitude sites was “Genus X” followed by Onconeura sp.2, “Genus 9”, “Genus 10”, and Rheotanytarsus sp.2; while Rheotanytarsus lamellatus, Oliveiriella sanjavieri, and Thienemanniella sp. were good indicators for low altitude sites. O. sanjavieri and R. lamellatus were the best indicators for high-water period. The most relevant environmental variables influencing their spatial and temporal distribution were altitude, water temperature, conductivity, and pH. This study is the first to analyze and describe in detail the spatial and temporal distribution of Chironomidae larvae assemblages in northwestern Argentina, and most of the taxa reported here are new records for the region.  相似文献   

13.
Updated locality records of species of Metadiaptomus and Tropodiaptomus on the African continent confirm the generally disjunct distribution of these two taxa as recognised by Dumont (1980) in North Africa. Distributional data for southern Africa reveal little range overlap between these two genera. Apart from two south western Cape taxa, species of Metadiaptomus are largely confined to upland, higher latitude, semi-arid or arid warm subtemperate regions, while species of Tropodiaptomus generally occupy moist, lower-lying, lower latitude subtropical regions. Separation along latitudinal and/or altitudinal axes implicates temperature as a controlling factor, while separation on the precipitation axis suggests the importance of habitat permanence. Using a multiple regression equation derived for African waters to predict water temperature from latitude and altitude, it is shown that the two genera tend to separate around the 20 °C mean annual temperature isotherm. Additional factors influencing distribution (habitat permanence, water quality, competition and predation) are discussed.  相似文献   

14.
The role of salinity as a factor determining the distribution of two red algal taxa, Caloglossa leprieurii (Mont.) J. Ag. var. leprieurii and Caloglossa leprieurii var. angusta Jao, along the course of the Brisbane River, Queensland, Australia, was investigated. In the field, C. leprieurii var. angusta tolerated a narrower salinity range (mean salinity = 0.0–18.9) than C. leprieurii var. leprieurii (mean salinity = 2.0–33.8) and occupied areas of lower salinity (salinity expressed according to the Practical Salinity Scale of 1978). Both taxa coexisted for a distance of 23 km along the middle reaches of the river. Cell measurements of specimens of both taxa collected along the river showed an increase in cell sizes upstream from the mouth. Results of a reciprocal transplant experiment and growth responses in a series of laboratory culture studies of the two taxa in a range of salinities are presented. These could be correlated with the field distribution of the algae, demonstrating their euryhalinity and the presence of distinct salinity ecotypes.  相似文献   

15.
We explored mechanisms determining the upper altitudinal limit of ephemeropterans from two different genera: Leptohyphes Eaton, 1882 Eaton, A.E. (1882), ?An Announcement of New Genera of the Ephemeridae?, The Entomologist's Monthly Magazine, 18, 207208. [Google Scholar] (Leptohyphidae) and Lachlania Hagen, 1868 Hagen, H.A. (1868), ?On Lachlania Abnormis: A New Genus and Species from Cuba Belonging to the Ephemerina?, Proceedings of the Boston Society of Natural History, 11, 372375. [Google Scholar] (Oligoneuriidae). For this, we (1) surveyed the two taxa in 165 stream sites along a wide altitudinal gradient; (2) sampled benthic fauna at short altitudinal intervals along a stream, from 2780 to 3150 m above sea level; (3) collected adults at the lowest and highest sites; and (4) transplanted nymphs from the lowest to the highest study site in our stream to determine survival over time. Densities of the two taxa declined gradually with altitude and both disappeared between 2950 and 3080 m a.s.l. The upper altitudinal limit in the stream seemed to be most closely related to mean oxygen saturation, temperature, and current velocity. Adults were collected where the nymphs were found, but not at the upstream site where the nymphs were absent, implying limited upstream dispersal of adults and some of the altitudinal constraint lying at the adult stage. Short-term survival of transplanted nymphs was lower than that of controls, suggesting that the distribution was limited at the juvenile stage, and that at least some of the altitudinal constraint is related to the abiotic stream environment.  相似文献   

16.
The Balkan Botanic Garden of Kroussia (BBGK) is dedicated to the ex situ conservation of native plants of Greece and the Balkans. The BBGK has formulated a conservation strategy for the collection of wild plant material for propagation, prioritizing mainly the endemic, rare, endangered, threatened and vulnerable plants of Europe found in different regions of Greece. Its aim is to contribute to the implementation of Target 8 of the Global and European Strategies for Plant Conservation at local, regional and international scales. In order to (i) define the ecological profile of the in situ requirements preferred and/or tolerated by each selected species, (ii) develop rapid and effective species-specific propagation protocols, and (iii) improve the cultivation of species of conservation concern in BBGK’s nurseries and ex situ conservation sections, geographical coordinates and in situ collection data obtained for each taxon were imported into a Geographic Information System environment (GIS). This information was then linked with several digital GIS thematic layers, including topographic, geological, edaphic, climatic, precipitation and temperature data derived from digital databases. Based on this approach, sexual and asexual propagation of plants from the Ionian Islands were conducted and rapid and effective baseline protocols were developed for 29 taxa (species and subspecies); four are presented here in detail and species-specific ex situ propagation and cultivation guidelines are given. Most of the taxa originating from the Ionian Islands were propagated by cuttings (55.2%) or seeds (34.5%), while the rest were propagated by root division at a rate from 1.7 to 2. The first round of propagation achieved a success rate ranging from 15 to 50% for 3 taxa, from 60 to 80% for 8 taxa and from more than 80 to 100% for 16 taxa, while the ex situ cultivation of the wild and propagated plant material has, so far, been successful. The application of GIS exemplified here presents a sensible and invaluable tool with a broad-scale potential in enhancing the prospects of the ex situ conservation of priority species collected from diverse environmental conditions in man-made habitats such as botanic gardens.  相似文献   

17.
As trees and shrubs approach the high elevation tree limit, it is often assumed that they fall short in photosynthate (source limitation). Alternatively, low temperature may restrict carbon investment (growth, sink limitation). The content of mobile non-structural carbohydrates (NSC) in tissues is considered a measure of the carbon source–sink balance. To test the source vs. sink limitation hypothesis, we compared late-season NSC concentrations of various woody taxa across altitudinal gradients from the subalpine forest to the treeline at the eastern edge of the Tibetan Plateau. Since we were interested in the generality of trends, we present “community” trends across four taxa, namely Quercus aquifolioides, Abies faxoniana, Rhododendron fabri subsp. prattii and Sorbus rufopilosa. NSC concentrations increased significantly with altitude in branch wood, current-year and last-year leaves, while there were no significant trends in stem sapwood and root xylem. The sugar to starch ratio was roughly 1:1 in branches and evergreen leaves, while stems and roots showed a higher starch fraction. Analyses of total nitrogen in leaves and wood tissues indicated no change in the trees’ nitrogen supply with elevation. The overall altitudinal trends of NSC in this group of woody plant species revealed no depletion of carbon reserves near the tree limit, suggesting that sink limitation predominates woody plant life across this treeline ecotone community.  相似文献   

18.
Summer frost resistance and ice nucleation temperatures for 33 alpine plant species were measured in situ to avoid the shortcomings of laboratory tests. Species were selected to investigate the relationship between plant stature and upper distribution boundary, and frost resistance and freezing patterns. The species tested in situ were on average 1.1 K (± 0.2, SE) frost hardier than in laboratory tests. Frost resistance (LT50) ranged from ?4.5 to ?14.6 °C and appeared insufficient to protect against air temperature minima, corroborating reports of natural frost damage. All species tolerated extracellular ice formation (recorded at ?1.9 ± 0.2 °C; E1). Initial frost damage occurred at average temperatures 4.9 K below E1. In 64% of the species a second exotherm (E2) and frost damage were recorded between ?3.7 and ?9.4 °C. In the highest ranging species E2 was not detectable. Frost resistance increased with increasing upper distribution boundary (0.4 K per 100 m), corresponding well with the altitudinal decrease in air temperature minima. No relationship between plant stature and frost resistance was found. Graminoids were significantly frost hardier than other growth forms. Frost survival at high altitudes will depend not only on altitudinal increase in frost resistance but also on freezing avoidance strategies, snow cover protection and a high recuperation capacity.  相似文献   

19.
The respiratory behaviour of the sharpsnout sea bream (Diplodus puntazzo) with fish weights between 15 and 509 g at temperatures of 15–29°C was studied, with special attention paid to critical and lethal oxygen saturation (Scrit and LC50, respectively) and ventilatory frequency (Vf). The species maintained a constant oxygen consumption rate regardless of the concentration of dissolved oxygen, until Scrit was reached. The mean of Scrit and LC50 was 34% (2.4 mg L−1) and 11% (0.8 mg L−1), respectively. The Scrit was independent of fish weight and temperature, whereas the LC50 values were positively correlated with both factors (P < 0.05). The higher resistance in small fish could be due to their greater Vf response to hypoxia than in larger animals. Furthermore, the increased metabolism resulting from the effect of temperature was offset by an increased Vf. The Vf remained constant down to a mean value of 67% oxygen saturation, regardless of fish weight and temperature. These findings suggest an optimum oxygen saturation of above 70% for D. puntazzo culture.  相似文献   

20.
Growth and leaf physiology of monkeyflowers with different altitude ranges   总被引:1,自引:0,他引:1  
Sommer U  Sommer F 《Oecologia》2006,148(2):183-194
Every species is limited both geographically and ecologically to a subset of available habitats, yet for many species the causes of distribution limits are unknown. Temperature is thought to be one of the primary determinants of species distributions along latitudinal and altitudinal gradients. This study examined leaf physiology and plant performance under contrasting temperature regimes of sister species of monkeyflower, Mimulus cardinalis and Mimulus lewisii (Phrymaceae), that differ in altitude distribution to test the hypothesis that temperature is the primary determinant of differences in fitness versus altitude. Each species attained greatest aboveground biomass, net photosynthetic rate, and effective quantum yield of photosystem II when grown under temperatures characteristic of the altitudinal range center. Although both species exhibited greater stem length, stomatal conductance, and intercellular CO2 concentration in hot than in cold temperatures, these traits showed much greater reductions under cold temperature for M. cardinalis than for M. lewisii. Survival of M. lewisii was also sensitive to temperature, showing a striking decrease in hot temperatures. Within each temperature regime, the species native to that temperature displayed greatest growth and leaf physiological capacity. Populations from the altitude range center and range margin of each species were used to examine population differentiation, but central and marginal populations did not differ in most growth or leaf physiological responses to temperature. This study provides evidence that M. cardinalis and M. lewisii differ in survival, growth, and leaf physiology under temperature regimes characterizing their contrasting low and high altitude range centers, and suggests that the species’ altitude range limits may arise, in part, due to metabolic limitations on growth that ultimately decrease survival and limit reproduction.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号