首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   913671篇
  免费   97786篇
  国内免费   1033篇
  2018年   12716篇
  2017年   12305篇
  2016年   14163篇
  2015年   15510篇
  2014年   18168篇
  2013年   25446篇
  2012年   30621篇
  2011年   34728篇
  2010年   24037篇
  2009年   22332篇
  2008年   30082篇
  2007年   32200篇
  2006年   25294篇
  2005年   24938篇
  2004年   24500篇
  2003年   23457篇
  2002年   22670篇
  2001年   40806篇
  2000年   40795篇
  1999年   31942篇
  1998年   10720篇
  1997年   11097篇
  1996年   10352篇
  1995年   10091篇
  1994年   9619篇
  1993年   9648篇
  1992年   25952篇
  1991年   25232篇
  1990年   24571篇
  1989年   23772篇
  1988年   21973篇
  1987年   20565篇
  1986年   19426篇
  1985年   19018篇
  1984年   15758篇
  1983年   13440篇
  1982年   10101篇
  1981年   9144篇
  1980年   8553篇
  1979年   14780篇
  1978年   11589篇
  1977年   10509篇
  1976年   9717篇
  1975年   10970篇
  1974年   11955篇
  1973年   11644篇
  1972年   10899篇
  1971年   10020篇
  1970年   8263篇
  1969年   7960篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Characteristics of morphology and number of melanomacrophage centers (MMCs) in the liver and spleen of the roach Rutilus rutilus and the amount of pigments in MMCs during the Haff disease outbreak and the death of fish in Lake Kotokel in relation to these parameters in the roach from Lake Baikal are described. Pathological changes in the microvasculature and parenchyma in the liver of the roach from Lake Kotokel were found. The area of melanomacrophage centers in the liver of the roach from this lake was significantly smaller, whereas the number and size of these centers in the spleen was significantly larger than in the roaches from Lake Baikal. Among the pigments studied, the strongest response to the content of this toxin in the water body was shown by hemosiderin. An increase in its amount in the spleen MMCs testifies to an enhanced degradation of erythrocytes and iron release, which may be caused by the damage of cells of the erythrocyte lineage by the toxin.  相似文献   
2.
3.
During epithelial cell polarization, Yurt (Yrt) is initially confined to the lateral membrane and supports the stability of this membrane domain by repressing the Crumbs-containing apical machinery. At late stages of embryogenesis, the apical recruitment of Yrt restricts the size of the apical membrane. However, the molecular basis sustaining the spatiotemporal dynamics of Yrt remains undefined. In this paper, we report that atypical protein kinase C (aPKC) phosphorylates Yrt to prevent its premature apical localization. A nonphosphorylatable version of Yrt dominantly dismantles the apical domain, showing that its aPKC-mediated exclusion is crucial for epithelial cell polarity. In return, Yrt counteracts aPKC functions to prevent apicalization of the plasma membrane. The ability of Yrt to bind and restrain aPKC signaling is central for its role in polarity, as removal of the aPKC binding site neutralizes Yrt activity. Thus, Yrt and aPKC are involved in a reciprocal antagonistic regulatory loop that contributes to segregation of distinct and mutually exclusive membrane domains in epithelial cells.  相似文献   
4.
Developmental axon branching dramatically increases synaptic capacity and neuronal surface area. Netrin-1 promotes branching and synaptogenesis, but the mechanism by which Netrin-1 stimulates plasma membrane expansion is unknown. We demonstrate that SNARE-mediated exocytosis is a prerequisite for axon branching and identify the E3 ubiquitin ligase TRIM9 as a critical catalytic link between Netrin-1 and exocytic SNARE machinery in murine cortical neurons. TRIM9 ligase activity promotes SNARE-mediated vesicle fusion and axon branching in a Netrin-dependent manner. We identified a direct interaction between TRIM9 and the Netrin-1 receptor DCC as well as a Netrin-1–sensitive interaction between TRIM9 and the SNARE component SNAP25. The interaction with SNAP25 negatively regulates SNARE-mediated exocytosis and axon branching in the absence of Netrin-1. Deletion of TRIM9 elevated exocytosis in vitro and increased axon branching in vitro and in vivo. Our data provide a novel model for the spatial regulation of axon branching by Netrin-1, in which localized plasma membrane expansion occurs via TRIM9-dependent regulation of SNARE-mediated vesicle fusion.  相似文献   
5.
6.
7.
8.
An insufficiently known bivalve and gastropod assemblage from the Early-Middle Miocene (Tarkhanian-Chokrakian) of northern Sinop Province (Turkey), is analyzed. Environments of the assemblage are reconstructed for the Chokrakian as subtidal, with prevailing lime and sandy bottom and good aeration, and partially well vegetated. Impoverishment of the mollusk biocoenose in this part of the marine basin (only 18 bivalve and 22 gastropod species recorded) compared to other areas, including the closest regions, Bulgaria on the west and Georgia on the east, is emphasized. The relatively low diversity of the fauna is probably connected not only with insufficient collecting, but with special hydrological conditions. A special aspect of the fauna is highlighted by the presence of the bivalve Circomphalus foliaceolamellosus subplicatus (Orb.), which is rare in the Chokrakian.  相似文献   
9.
10.
The collagenous extracellular matrix (ECM) of skeletal muscle functions to transmit force, protect sensitive structures, and generate passive tension to resist stretch. The mechanical properties of the ECM change with age, atrophy, and neuromuscular pathologies, resulting in an increase in the relative amount of collagen and an increase in stiffness. Although numerous studies have focused on the effect of muscle fibrosis on passive muscle stiffness, few have examined how these structural changes may compromise contractile performance. Here we combine a mathematical model and experimental manipulations to examine how changes in the mechanical properties of the ECM constrain the ability of muscle fibers and fascicles to radially expand and how such a constraint may limit active muscle shortening. We model the mechanical interaction between a contracting muscle and the ECM using a constant volume, pressurized, fiber-wound cylinder. Our model shows that as the proportion of a muscle cross section made up of ECM increases, the muscle’s ability to expand radially is compromised, which in turn restricts muscle shortening. In our experiments, we use a physical constraint placed around the muscle to restrict radial expansion during a contraction. Our experimental results are consistent with model predictions and show that muscles restricted from radial expansion undergo less shortening and generate less mechanical work under identical loads and stimulation conditions. This work highlights the intimate mechanical interaction between contractile and connective tissue structures within skeletal muscle and shows how a deviation from a healthy, well-tuned relationship can compromise performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号