首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Urocortin has cell-proliferative effects on cardiac non-myocytes   总被引:3,自引:0,他引:3  
Ikeda K  Tojo K  Oki Y  Nakao K 《Life sciences》2002,71(16):1929-1938
Urocortin (Ucn) is a member of the corticotropin-releasing hormone (CRH)-related peptides that has been reported to have cardiac inotropic and hypertrophic effects. In addition, Ucn mRNA was expressed in cardiac myocytes (MCs) and Ucn was suggested to have cardioprotective effects. Recently, it was reported that Ucn mRNA was expressed in cardiac non-myocytes (NMCs). Based on these facts, Ucn is assumed to affect not only MCs but also NMCs in an autocrine fashion. The present study was designed to elucidate a pathophysiological role of Ucn on NMCs. NMCs were prepared by the discontinuous Percoll gradient and adhesion method. Ucn increased [(3)H]-thymidine uptake into NMCs. Ucn also enhanced endothelin-1-induced increase of [(3)H]-thymidine uptake into NMCs. Effects of Ucn on [(3)H]-thymidine uptake into NMCs were significantly abolished by the protein kinase A inhibitor, H89 (10(-5) M), but not by a competitive antagonist of CRH receptors, astressin (10(-5) M). Ucn also increased intracellular cAMP accumulation more potently than CRH on a molar basis. Finally, both MCs and NMCs also secreted Ucn. Together with the recent findings, at least in NMCs, these data suggest that Ucn could exert its own actions via the cAMP signaling pathway, but not through known CRH type 2 receptors, in an autocrine fashion. In conclusion, the present study indicated that Ucn was secreted not only from MCs but also from NMCs and that the primary source of Ucn acting on heart was the heart itself. On the other hand, Ucn could proliferate NMCs as well as MCs, suggesting that Ucn could be involved in cardiac hypertrophy and fibrosis, i.e., cardiac remodeling, in spite of its putative cardioprotective actions.  相似文献   

2.
3.
4.
Corticotropin-releasing hormone (CRH) and urocortins (Ucn) bind with various affinities to two G-protein-coupled receptors, CRHR1 and CRHR2, which are expressed in brain and in peripheral tissues, including immune cells. CRHR2-deficient mice display anxiety-like behavior, hypersensitivity to stress, altered feeding behavior and metabolism, and cardiovascular abnormalities. However, the phenotype of these mice in inflammatory responses has not been determined. In the present study we found that compared with wild-type CRHR2-null mice developed substantially reduced intestinal inflammation and had lower intestinal mRNA expression of the potent chemoattractants keratinocyte chemokine and monocyte chemoattractant protein 1 following intraluminal exposure to Clostridium difficile toxin A, a potent enterotoxin that mediates antibiotic-associated diarrhea and colitis in humans. This effect was recapitulated by administration of astressin 2B, a selective CRHR2 antagonist, before toxin A exposure. Moreover, Ab array analysis revealed reduced expression of several inflammatory chemokines, including keratinocyte chemokine and monocyte chemoattractant protein 1 in toxin A-exposed mice pretreated with astressin 2B. Real-time RT-PCR of wild-type mouse intestine showed that only UcnII, but not other Ucn, was significantly up-regulated by ileal administration of toxin A at 4 h compared with buffer exposure. We also found that human colonic epithelial HT-29 cells express CRHR2alpha mRNA, whereas expression of beta and gamma spliced variants was minimal. Moreover, treatment of HT-29 cells with UcnII, which binds exclusively to CRHR2, stimulated expression of IL-8 and monocyte chemoattractant protein 1. Taken together, these results provide direct evidence that CRHR2 mediates intestinal inflammatory responses via release of proinflammatory mediators at the colonocyte level.  相似文献   

5.
Mast cells are critical for allergic reactions, but also for innate or acquired immunity and inflammatory conditions that worsen by stress. Corticotropin-releasing hormone (CRH), which activates the hypothalamic-pituitary-adrenal axis under stress, also has proinflammatory peripheral effects possibly through mast cells. We investigated the expression of CRH receptors and the effects of CRH in the human leukemic mast cell (HMC-1) line and human umbilical cord blood-derived mast cells. We detected mRNA for CRH-R1alpha, 1beta, 1c, 1e, 1f isoforms, as well as CRH-R1 protein in both cell types. CRH-R2alpha (but not R2beta or R2gamma) mRNA and protein were present only in human cord blood-derived mast cells. CRH increased cAMP and induced secretion of vascular endothelial growth factor (VEGF) without tryptase, histamine, IL-6, IL-8, or TNF-alpha release. The effects were blocked by the CRH-R1 antagonist antalarmin, but not the CRH-R2 antagonist astressin 2B. CRH-stimulated VEGF production was mediated through activation of adenylate cyclase and increased cAMP, as evidenced by the fact that the effect of CRH was mimicked by the direct adenylate cyclase activator forskolin and the cell-permeable cAMP analog 8-bromo-cAMP, whereas it was abolished by the adenylate cyclase inhibitor SQ22536. This is the first evidence that mast cells express functional CRH receptors and that CRH can induce VEGF secretion selectively. CRH-induced mast cell-derived VEGF could, therefore, be involved in chronic inflammatory conditions associated with increased VEGF, such as arthritis or psoriasis, both of which worsen by stress.  相似文献   

6.
7.
8.
Urocortin (Ucn1), a member of corticotrophin‐releasing hormone (CRH) family, has been reported to be upregulated in inflammatory diseases and function as an autocrine or paracrine inflammatory mediator. Growing evidence shows that Ucn1 increases the endothelial permeability in inflammatory conditions; however, the detailed mechanisms are not clear. In the present study, we investigated the mechanisms of increased endothelial permeability by Ucn1 in human umbilical vein endothelial cells (HUVECs) exposed to lipopolysaccharide (LPS). Pretreatment of HUVECs with Ucn1 increased the endothelial cell permeability, which was augmented by LPS synergistically. Significant downregulation of VE‐cadherin expression was also observed. Moreover, Ucn1 increased phosphorylation of protein kinase D (PKD) and heat shock protein 27 (HSP27) in a time‐ and CRHR2‐dependent manner. Inhibition of PKD and HSP27 drastically attenuated Ucn1‐induced downregulation of VE‐cadherin expression. Further investigations demonstrated that Ucn1 phosphorylated β‐catenin at Ser552 to disrupt the cadherin–catenin complex and hence promote the disassociation of β‐catenin and VE‐cadherin. Disassociation of β‐catenin and VE‐cadherin resulted in decreased VE‐cadherin expression while on the contrary β‐catenin was increased, which may due to the inactivation of GSK‐3β. Increased β‐catenin translocated into the nucleus and subsequently bound to TCF/LEF site, contributing to the elevated expression of vascular endothelial growth factor (VEGF). The above effects of Ucn1 were completely reversed by CRHR2 receptor blocker, antisauvagine‐30. Taken together, our data suggest that Ucn1 increase LPS‐induced endothelial permeability by disrupting the VE‐cadherin–β‐catenin complex via activation of CRHR2 and PKD‐HSP27 signaling pathway. J. Cell. Physiol. 228: 1295–1303, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
In most target tissues, the adenylyl cyclase/cAMP/PKA, the extracellular signal regulated kinase and the protein kinase B/Akt are the main pathways employed by the type 2 corticotropin-releasing hormone receptor to mediate the biological actions of urocortins (Ucns) and CRH. To decipher the molecular determinants of CRH-R2 signaling, we studied the signaling pathways in HEK293 cells overexpressing recombinant human CRH-R2β receptors. Use of specific kinase inhibitors showed that the CRH-R2β cognate agonist, Ucn 2, activated extracellular signal regulated kinase in a phosphoinositide 3-kinase and cyclic adenosine monophosphate/PKA-dependent manner with contribution from Epac activation. Ucn 2 also induced PKA-dependent association between AKAP250 and CRH-R2β that appeared to be necessary for extracellular signal regulated kinase activation. PKB/Akt activation was also mediated via pertussis toxin-sensitive G-proteins and PI3-K activation but did not require cAMP/PKA, Epac or protein kinase C for optimal activation. Potential feedback mechanisms that target the CRH-R2β itself and modulate receptor trafficking and endocytosis were also investigated. Indeed, our results suggested that inhibition of either PKA or extracellular signal regulated kinase pathway accelerates CRH-R2β endocytosis. Furthermore, Ucn 2-activated extracellular signal regulated kinase appeared to target β-arrestin1 and modulate, through phosphorylation at Ser412, β-arrestin1 translocation to the plasma membrane and CRH-R2β internalization kinetics. Loss of this “negative feedback” mechanism through inhibition of the extracellular signal regulated kinase activity resulted in significant attenuation of Ucn 2-induced cAMP response, whereas Akt phosphorylation was not affected by altered receptor endocytosis. These findings reveal a complex interplay between the signaling molecules that allow “fine-tuning” of CRH-R2β functional responses and regulate signal integration.  相似文献   

10.
Toll-like receptors (TLRs) associate with adaptor molecules (MyD88, Mal/TIRAP, TRAM, and TRIF) to mediate signaling of host-microbial interaction. For instance, TLR4 utilizes the combination of both Mal/TIRAP-MyD88 (MyD88-dependent pathway) and TRAM-TRIF (MyD88-independent pathway). However, TLR5, the specific receptor for flagellin, is known to utilize only MyD88 to elicit inflammatory responses, and an involvement of other adaptor molecules has not been suggested in TLR5-dependent signaling. Here, we found that TRIF is involved in mediating TLR5-induced nuclear factor κB (NFκB) and mitogen-activated protein kinases (MAPKs), specifically JNK1/2 and ERK1/2, activation in intestinal epithelial cells. TLR5 activation by flagellin permits the physical interaction between TLR5 and TRIF in human colonic epithelial cells (NCM460), whereas TLR5 does not interact with TRAM upon flagellin stimulation. Both primary intestinal epithelial cells from TRIF-KO mice and TRIF-silenced NCM460 cells significantly reduced flagellin-induced NFκB (p105 and p65), JNK1/2, and ERK1/2 activation compared with control cells. However, p38 activation by flagellin was preserved in these TRIF-deficient cells. TRIF-KO intestinal epithelial cells exhibited substantially reduced inflammatory cytokine (keratinocyte-derived cytokine, macrophage inflammatory protein 3α, and IL-6) expression upon flagellin, whereas control cells from TRIF-WT mice showed robust cytokine expression by flagellin. Compare with TRIF-WT mice, TRIF-KO mice were resistant to in vivo intestinal inflammatory responses: flagellin-mediated exacerbation of colonic inflammation and dextran sulfate sodium-induced experimental colitis. We conclude that in addition to MyD88, TRIF mediates TLR5-dependent responses and, thereby regulates inflammatory responses elicited by flagellin/TLR5 engagement. Our findings suggest an important role of TRIF in regulating host-microbial communication via TLR5 in the gut epithelium.  相似文献   

11.
12.
13.
The VEGF/VPF (vascular endothelial growth factor/vascular permeability factor) ligands and receptors are crucial regulators of vasculogenesis, angiogenesis, lymphangiogenesis and vascular permeability in vertebrates. VEGF-A, the prototype VEGF ligand, binds and activates two tyrosine kinase receptors: VEGFR1 (Flt-1) and VEGFR2 (KDR/Flk-1). VEGFR1, which occurs in transmembrane and soluble forms, negatively regulates vasculogenesis and angiogenesis during early embryogenesis, but it also acts as a positive regulator of angiogenesis and inflammatory responses, playing a role in several human diseases such as rheumatoid arthritis and cancer. The soluble VEGFR1 is overexpressed in placenta in preeclampsia patients. VEGFR2 has critical functions in physiological and pathological angiogenesis through distinct signal transduction pathways regulating proliferation and migration of endothelial cells. VEGFR3, a receptor for the lymphatic growth factors VEGF-C and VEGF-D, but not for VEGF-A, regulates vascular and lymphatic endothelial cell function during embryogenesis. Loss-of-function variants of VEGFR3 have been identified in lymphedema. Formation of tumor lymphatics may be stimulated by tumor-produced VEGF-C, allowing increased spread of tumor metastases through the lymphatics. Mapping the signaling system of these important receptors may provide the knowledge necessary to suppress specific signaling pathways in major human diseases.  相似文献   

14.
B-cell activating factor (BAFF) plays a role in the generation and the maintenance of mature B cells. Lipopolysaccharide (LPS) increased BAFF expression through the activation of toll-like receptor 4 (TLR4)-dependent signal transduction. Here, we investigated the mechanism of action on mouse BAFF (mBAFF) expression by cAMP production in Raw264.7 mouse macrophages. mBAFF expression was increased by the treatment with a cAMP analogue, dibutyryl-cAMP which is the activator of protein kinase A (PKA), cAMP effector protein. PKA activation was measured by the phosphorylation of cAMP-response element binding protein (CREB) on serine 133 (S133). cAMP production and CREB (S133) phosphorylation were augmented by LPS-stimulation. While mBAFF promoter activity was enhanced by the co-transfection with pS6-RSV-CREB, it was reduced by siRNA-CREB. PKA inhibitor, H-89, reduced CREB (S133) phosphorylation and mBAFF expression in control and LPS-stimulated macrophages. Another principal cAMP effector protein is cAMP-responsive guanine nucleotide exchange factor (Epac), a Rap GDP exchange factor. Epac was activated by the treatment with 8-(4-chloro-phenylthio)-2′-O-methyladenosine-3′,5′-cyclic monophosphate (CPT), Epac activator, as judged by the measurement of Rap1 activation. Basal level of mBAFF expression was increased by CPT treatment. LPS-stimulated mBAFF expression was also slightly enhanced by co-treatment with CPT. In addition, dibutyryl-cAMP and CPT enhanced mBAFF expression in bone marrow-derived macrophages (BMDM). With these data, it suggests that the activation of PKA and cAMP/Epac1/Rap1 pathways could be required for basal mBAFF expression, as well as being up-regulated in the TLR4-induced mBAFF expression.  相似文献   

15.
Tan YR  Qin XQ  Guan CX  Zhang CQ  Luo ZQ  Sun XH 《生理学报》2003,55(2):121-127
细胞间粘附分子—1(ICAM—1)是介导细胞与细胞之间粘附的重要生物分子;核因子—κB(NF—κB)是体内普遍存在、能迅速对刺激产生反应的重要核转录因子。越来越多的证据显示,ICAM—1表达与NF—κB激活是炎症反应的重要步骤。我们应用免疫组化、RT—PCR、凝胶阻滞电泳(EMSA)等多种实验方法,观察了肺内调节肽对支气管上皮细胞ICAM—1表达及NF—κB活性的影响,以及NF—κB抑制剂MG—132对ICAM—1表达的影响。实验结果发现,VIP、EGF可使臭氧应激BECS的ICAM—1表达降低;ET—1、CGRP可使未受应激BECs的ICAM—1表达增加。NF—κB抑制剂MG—132可阻断O3、ET—1、CGRP引起的ICAM—1表达,提示NF—κB在调控ICAM—1表达中起重要作用。EMSA结果显示,BECs中NF—κB在臭氧应激下反复激活,CGRP与ET—1可促进NF—κB的激活;VIP与EGF可抑制臭氧应激的BECs中NF—κB的激活。以上结果说明,VIP、EGF可通过下调ICAM—1转录及NF—κB激活减轻炎症反应,而ET—1、CGRP可通过上调ICAM—1转录及NF—κB激活、加大炎症反应。ICAM—1与NF—κB的持续表达和反复激活是炎症持续加重发展的重要因素。  相似文献   

16.
The expression of N-myc downstream-regulated gene 1 (NDRG1) was significantly correlated with tumor angiogenesis and malignant progression together with poor prognosis in gastric cancer. However, the underlying mechanism for the role of NDRG1 in the malignant progression of gastric cancer remains unknown. Here we examined whether and how NDRG1 could modulate tumor angiogenesis by human gastric cancer cells. We established NU/Cap12 and NU/Cap32 cells overexpressing NDRG1 in NUGC-3 cells, which show lower tumor angiogenesis in vivo. Compared with parental NU/Mock3, NU/Cap12, and NU/Cap32 cells: 1) induced higher tumor angiogenesis than NU/Mock3 cells accompanied by infiltration of tumor-associated macrophages in mouse dorsal air sac assay and Matrigel plug assay; 2) showed much higher expression of CXC chemokines, MMP-1, and the potent angiogenic factor VEGF-A; 3) increased the expression of the representative inflammatory cytokine, IL-1α; 4) augmented JNK phosphorylation and nuclear expression of activator protein 1 (AP-1). Further analysis demonstrated that knockdown of AP-1 (Jun and/or Fos) resulted in down-regulation of the expression of VEGF-A, CXC chemokines, and MMP-1, and also suppressed expression of IL-1α in NDRG1-overexpressing cell lines. Treatment with IL-1 receptor antagonist (IL-1ra) resulted in down-regulation of JNK and c-Jun phosphorylation, and the expression of VEGF-A, CXC chemokines, and MMP-1 in NU/Cap12 and NU/Cap32 cells. Finally, administration of IL-1ra suppressed both tumor angiogenesis and infiltration of macrophages by NU/Cap12 in vivo. Together, activation of JNK/AP-1 thus seems to promote tumor angiogenesis in relationship to NDRG1-induced inflammatory stimuli by gastric cancer cells.  相似文献   

17.
18.
19.
Manson ME  Corey DA  Rymut SM  Kelley TJ 《Biochemistry》2011,50(27):6022-6029
Previous work demonstrated that cystic fibrosis (CF) cells exhibit an increase in cAMP-mediated signaling as a characteristic response to lost CFTR function. Evidence for increased cAMP-mediated signaling in CF included increased phosphorylation of the cAMP response element binding protein (CREB) and elevated β-arrestin-2 (βarr2) expression. However, subsequent studies reveal that CREB activation in CF cells is independent of protein kinase-A (PKA). The goal of this study is to test the hypothesis that elevated βarr2 expression leads to increased CREB activation in a PKA-independent mechanism. βarr2-GFP expressing tracheal epithelial cells (βarr2-GFP) exhibit an increase of pCREB content and subsequent CRE activation compared to GFP expressing control cells. βarr2 activation of the ERK cascade represents a candidate mechanism leading to CREB activation. ERK exhibits increased activation in βarr2-GFP cells compared to cont-GFP cells, and ERK inhibition diminishes CRE activation in both GFP and βarr2-GFP cells. To test directly whether CREB regulation in CF is βarr2-dependent, nasal epithelium excised from wt mice (Cftr +/+; βarr2 +/+), CF mice (Cftr -/-; βarr2 +/+), and DKO mice (Cftr -/-; βarr2 -/-) were analyzed for pCREB protein content. Removal of βarr2 expression from CF mice reduces both pCREB and pERK content to wt levels. These data indicate that CF-related CREB regulation is mediated directly through βarr2 expression via the ERK pathway.  相似文献   

20.
Mucosal biopsies from inflamed colon of inflammatory bowel disease patients exhibit elevated epithelial apoptosis compared with those from healthy individuals, disrupting mucosal homeostasis and perpetuating disease. Therapies that decrease intestinal epithelial apoptosis may, therefore, ameliorate inflammatory bowel disease, but treatments that specifically target apoptotic pathways are lacking. Proteinase-activated receptor-2 (PAR2), a G protein-coupled receptor activated by trypsin-like serine proteinases, is expressed on intestinal epithelial cells and stimulates mitogenic pathways upon activation. We sought to determine whether PAR2 activation and signaling could rescue colonic epithelial (HT-29) cells from apoptosis induced by proapoptotic cytokines that are increased during inflammatory bowel disease. The PAR2 agonists 2-furoyl-LIGRLO (2f-LI), SLIGKV and trypsin all significantly reduced cleavage of caspase-3, -8, and -9, poly(ADP-ribose) polymerase, and the externalization of phosphatidylserine after treatment of cells with IFN-γ and TNF-α. Knockdown of PAR2 with siRNA eliminated the anti-apoptotic effect of 2f-LI and increased the sensitivity of HT-29 cells to cytokine-induced apoptosis. Concurrent inhibition of both MEK1/2 and PI3K was necessary to inhibit PAR2-induced survival. 2f-LI was found to increase phosphorylation and inactivation of pro-apoptotic BAD at Ser112 and Ser136 by MEK1/2 and PI3K-dependent signaling, respectively. PAR2 activation also increased the expression of anti-apoptotic MCL-1. Simultaneous knockdown of both BAD and MCL-1 had minimal effects on PAR2-induced survival, whereas single knockdown had no effect. We conclude that PAR2 activation reduces cytokine-induced epithelial apoptosis via concurrent stimulation of MEK1/2 and PI3K but little involvement of MCL-1 and BAD. Our findings represent a novel mechanism whereby serine proteinases facilitate epithelial cell survival and may be important in the context of colonic healing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号