首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Contraction ofsmooth muscle in visceral organs is modified by structures external tothe muscle. Within muscle tissue itself, connective tissue plays animportant role in force transference among the contractile cells.Connections arranged radially can affect contractile mechanics bylimiting tissue expansion at short lengths. Previous work suggests thatincreased stiffness at extreme shortening is due to such radialconstraints. Two approaches to further study of these effects arereported. To increase radial constraints, very thin Silastic bands wereplaced loosely about strips of canine trachealis muscle at rest length.The strips were allowed to shorten under light afterloads, expandinguntil restrained by the bands. Subsequent removal of the bands allowed increased shortening, with less increase in stiffness at short lengths.Related isometric effects were observed. To reduce constraints, musclestrips were partially digested with collagenase. Compared with controlconditions, this treatment permitted further shortening, with lessincrease in stiffness at short lengths. These results emphasize therole of extracellular structures in determining mechanical function ofsmooth muscle.

  相似文献   

2.
Muscles are composite structures. The protein filaments responsible for force production are bundled within fluid-filled cells, and these cells are wrapped in ordered sleeves of fibrous collagen. Recent models suggest that the mechanical interaction between the intracellular fluid and extracellular collagen is essential to force production in passive skeletal muscle, allowing the material stiffness of extracellular collagen to contribute to passive muscle force at physiologically relevant muscle lengths. Such models lead to the prediction, tested here, that expansion of the fluid compartment within muscles should drive forceful muscle shortening, resulting in the production of mechanical work unassociated with contractile activity. We tested this prediction by experimentally increasing the fluid volumes of isolated bullfrog semimembranosus muscles via osmotically hypotonic bathing solutions. Over time, passive muscles bathed in hypotonic solution widened by 16.44 ± 3.66% (mean ± s.d.) as they took on fluid. Concurrently, muscles shortened by 2.13 ± 0.75% along their line of action, displacing a force-regulated servomotor and doing measurable mechanical work. This behaviour contradicts the expectation for an isotropic biological tissue that would lengthen when internally pressurized, suggesting a functional mechanism analogous to that of engineered pneumatic actuators and highlighting the significance of three-dimensional force transmission in skeletal muscle.  相似文献   

3.
The role of extracellular elements on the mechanical properties of skeletal muscles is unknown. Merosin is an essential extracellular matrix protein that forms a mechanical junction between the sarcolemma and collagen. Therefore, it is possible that merosin plays a role in force transmission between muscle fibers and collagen. We hypothesized that deficiency in merosin may alter passive muscle stiffness, viscoelastic properties, and contractile muscle force in skeletal muscles. We used the dy/dy mouse, a merosin-deficient mouse model, to examine changes in passive and active muscle mechanics. After mice were anesthetized and the diaphragm or the biceps femoris hindlimb muscle was excised, passive length-tension relationships, stress-relaxation curves, or isometric contractile properties were determined with an in vitro biaxial mechanical testing apparatus. Compared with controls, extensibility was smaller in the muscle fiber direction and the transverse fiber direction of the mutant mice. The relaxed elastic modulus was smaller in merosin-deficient diaphragms compared with controls. Interestingly, maximal muscle tetanic stress was depressed in muscles from the mutant mice during uniaxial loading but not during biaxial loading. However, presence of transverse passive stretch increases maximal contractile stress in both the mutant and normal mice. Our data suggest that merosin contributes to muscle passive stiffness, viscoelasticity, and contractility and that the mechanism by which force is transmitted between adjacent myofibers via merosin possibly in shear.  相似文献   

4.
The active and passive contractile performance of skeletal muscle fibers largely depends on the myosin heavy chain (MHC) isoform and the stiffness of the titin spring, respectively. Open questions concern the relationship between titin-based stiffness and active contractile parameters, and titin's importance for total passive muscle stiffness. Here, a large set of adult rabbit muscles (n = 37) was studied for titin size diversity, passive mechanical properties, and possible correlations with the fiber/MHC composition. Titin isoform analyses showed sizes between approximately 3300 and 3700 kD; 31 muscles contained a single isoform, six muscles coexpressed two isoforms, including the psoas, where individual fibers expressed similar isoform ratios of 30:70 (3.4:3.3 MD). Gel electrophoresis and Western blotting of two other giant muscle proteins, nebulin and obscurin, demonstrated muscle type-dependent size differences of < or =70 kD. Single fiber and single myofibril mechanics performed on a subset of muscles showed inverse relationships between titin size and titin-borne tension. Force measurements on muscle strips suggested that titin-based stiffness is not correlated with total passive stiffness, which is largely determined also by extramyofibrillar structures, particularly collagen. Some muscles have low titin-based stiffness but high total passive stiffness, whereas the opposite is true for other muscles. Plots of titin size versus percentage of fiber type or MHC isoform (I-IIB-IIA-IID) determined by myofibrillar ATPase staining and gel electrophoresis revealed modest correlations with the type I fiber and MHC-I proportions. No relationships were found with the proportions of the different type II fiber/MHC-II subtypes. Titin-based stiffness decreased with the slow fiber/MHC percentage, whereas neither extramyofibrillar nor total passive stiffness depended on the fiber/MHC composition. In conclusion, a low correlation exists between the active and passive mechanical properties of skeletal muscle fibers. Slow muscles usually express long titin(s), predominantly fast muscles can express either short or long titin(s), giving rise to low titin-based stiffness in slow muscles and highly variable stiffness in fast muscles. Titin contributes substantially to total passive stiffness, but this contribution varies greatly among muscles.  相似文献   

5.
Contraction of smooth muscle tissue involves interactions between active and passive structures within the cells and in the extracellular matrix. This study focused on a defined mechanical behavior (shortening-dependent stiffness) of canine tracheal smooth muscle tissues to evaluate active and passive contributions to tissue behavior. Two approaches were used. In one, mechanical measurements were made over a range of temperatures to identify those functions whose temperature sensitivity (Q(10)) identified them as either active or passive. Isotonic shortening velocity and rate of isometric force development had high Q(10) values (2.54 and 2.13, respectively); isometric stiffness showed Q(10) values near unity. The shape of the curve relating stiffness to isotonic shortening lengths was unchanged by temperature. In the other approach, muscle contractility was reduced by applying a sudden shortening step during the rise of isometric tension. Control contractions began with the muscle at the stepped length so that properties were measured over comparable length ranges. Under isometric conditions, redeveloped isometric force was reduced, but the ratio between force and stiffness did not change. Under isotonic conditions beginning during force redevelopment at the stepped length, initial shortening velocity and the extent of shortening were reduced, whereas the rate of relaxation was increased. The shape of the curve relating stiffness to isotonic shortening lengths was unchanged, despite the step-induced changes in muscle contractility. Both sets of findings were analyzed in the context of a quasi-structural model describing the shortening-dependent stiffness of lightly loaded tracheal muscle strips.  相似文献   

6.
Lateral transmission of force from myofibers laterally to the surrounding extracellular matrix (ECM) via the transmembrane proteins between them is impaired in old muscles. Changes in geometrical and mechanical properties of ECM of skeletal muscle do not fully explain the impaired lateral transmission with aging. The objective of this study was to determine the role of transmembrane proteins on force transmission in skeletal muscle. In this study, a 2D finite element model of single muscle fiber composed of myofiber, ECM, and the transmembrane proteins between them was developed to determine how changes in spatial density and mechanical properties of transmembrane proteins affect the force transmission in skeletal muscle. We found that force transmission and stress distribution are not affected by mechanical stiffness of the transmembrane proteins due to its non-linear stress–strain relationship. Results also showed that the muscle fiber with insufficient transmembrane proteins near the end of muscle fiber transmitted less force than that with more proteins does. Higher stress was observed in myofiber, ECM, and proteins in the muscle fiber with fewer proteins.  相似文献   

7.
A finite-element model for the mechanical analysis of skeletal muscles   总被引:1,自引:0,他引:1  
In the present paper, a finite-element model for simulating muscle mechanics is described. Based on nonlinear continuum mechanics an algorithm is proposed that includes the contractile active and passive properties of skeletal muscle. Stress in the muscle is assumed to result from the superposition of a passive and an active part. The passive properties are described by a hyperelastic constitutive material law whereas the active part depends on the fibre length, shortening velocity and an activation function. The constraint of approximate incompressibility of the muscle element is satisfied as a property of the constitutive equations. Because of the nonlinear behaviour of the material and the highly dynamical performance an incremental procedure including iterative methods is used. The advantage of the model over previous formulations is the possibility to integrate the element into an engineering standard finite-element programme ANSYS using advanced numerical tools. The model allows simulations of muscle recruitment, calculations of stress and strain distributions and predictions of muscle shape. Other possible applications are studies of the muscle architecture, the effect of inertia and impacts. First, simple examples are presented.  相似文献   

8.
Body movements are mainly provided by mechanical function of skeletal muscle. Skeletal muscle is composed of numerous bundles of myofibers that are sheathed by intramuscular connective tissues. Each myofiber contains many myofibrils that run longitudinally along the length of the myofiber. Myofibrils are the contractile apparatus of muscle and they are composed of repeated contractile units known as sarcomeres. A sarcomere unit contains actin and myosin filaments that are spaced by the Z discs and titin protein. Mechanical function of skeletal muscle is defined by the contractile and passive properties of muscle. The contractile properties are used to characterize the amount of force generated during muscle contraction, time of force generation and time of muscle relaxation. Any factor that affects muscle contraction (such as interaction between actin and myosin filaments, homeostasis of calcium, ATP/ADP ratio, etc.) influences the contractile properties. The passive properties refer to the elastic and viscous properties (stiffness and viscosity) of the muscle in the absence of contraction. These properties are determined by the extracellular and the intracellular structural components (such as titin) and connective tissues (mainly collagen) 1-2. The contractile and passive properties are two inseparable aspects of muscle function. For example, elbow flexion is accomplished by contraction of muscles in the anterior compartment of the upper arm and passive stretch of muscles in the posterior compartment of the upper arm. To truly understand muscle function, both contractile and passive properties should be studied.The contractile and/or passive mechanical properties of muscle are often compromised in muscle diseases. A good example is Duchenne muscular dystrophy (DMD), a severe muscle wasting disease caused by dystrophin deficiency 3. Dystrophin is a cytoskeletal protein that stabilizes the muscle cell membrane (sarcolemma) during muscle contraction 4. In the absence of dystrophin, the sarcolemma is damaged by the shearing force generated during force transmission. This membrane tearing initiates a chain reaction which leads to muscle cell death and loss of contractile machinery. As a consequence, muscle force is reduced and dead myofibers are replaced by fibrotic tissues 5. This later change increases muscle stiffness 6. Accurate measurement of these changes provides important guide to evaluate disease progression and to determine therapeutic efficacy of novel gene/cell/pharmacological interventions. Here, we present two methods to evaluate both contractile and passive mechanical properties of the extensor digitorum longus (EDL) muscle and the contractile properties of the tibialis anterior (TA) muscle.  相似文献   

9.
Titin is a filamentous protein spanning the half-sarcomere, with spring-like properties in the I-band region. Various structural, signaling, and mechanical functions have been associated with titin, but not all of these are fully elucidated and accepted in the scientific community. Here, I discuss the primary mechanical functions of titin, including its accepted role in passive force production, stabilization of half-sarcomeres and sarcomeres, and its controversial contribution to residual force enhancement, passive force enhancement, energetics, and work production in shortening muscle. Finally, I provide evidence that titin is a molecular spring whose stiffness changes with muscle activation and actin–myosin-based force production, suggesting a novel model of force production that, aside from actin and myosin, includes titin as a “third contractile” filament. Using this three-filament model of sarcomeres, the stability of (half-) sarcomeres, passive force enhancement, residual force enhancement, and the decrease in metabolic energy during and following eccentric contractions can be explained readily.  相似文献   

10.
A mathematical model was analyzed to obtain a quantitative and testable representation of the long-standing hypothesis that the respiratory muscles drive the chest wall along the trajectory for which the work of breathing is minimal. The respiratory system was modeled as a linear elastic system that can be expanded either by pressure applied at the airway opening (passive inflation) or by active forces in respiratory muscles (active inflation). The work of active expansion was calculated, and the distribution of muscle forces that produces a given lung expansion with minimal work was computed. The calculated expression for muscle force is complicated, but the corresponding kinematics of muscle shortening is simple: active inspiratory muscles shorten more during active inflation than during passive inflation, and the ratio of active to passive shortening is the same for all active muscles. In addition, the ratio of the minimal work done by respiratory muscles during active inflation to work required for passive inflation is the same as the ratio of active to passive muscle shortening. The minimal-work hypothesis was tested by measurement of the passive and active shortening of the internal intercostal muscles in the parasternal region of two interspaces in five supine anesthetized dogs. Fractional changes in muscle length were measured by sonomicrometry during passive inflation, during quiet breathing, and during forceful inspiratory efforts against a closed airway. Active muscle shortening during quiet breathing was, on average, 70% greater than passive shortening, but it was only weakly correlated with passive shortening. Active shortening inferred from the data for more forceful inspiratory efforts was approximately 40% greater than passive shortening and was highly correlated with passive shortening. These data support the hypothesis that, during forceful inspiratory efforts, muscle activation is coordinated so as to expand the chest wall with minimal work.  相似文献   

11.
Cyclically contracting muscles provide power for a variety of processes including locomotion, pumping blood, respiration, and sound production. In the current study, we apply a computational model derived from force–velocity relationships to explore how sustained power output is systematically affected by shortening velocity, operational frequency, and strain amplitude. Our results demonstrate that patterns of frequency dependent power output are based on a precise balance between a muscle's intrinsic shortening velocity and strain amplitude. We discuss the implications of this constraint for skeletal muscle design, and then explore implications for physiological processes based on cyclical muscle contraction. One such process is animal locomotion, where musculoskeletal systems make use of resonant properties to reduce the amount of metabolic energy used for running, swimming, or flying. We propose that skeletal muscle phenotype is tuned to this operational frequency, since each muscle has a limited range of frequencies at which power can be produced efficiently. This principle also has important implications for our understanding muscle plasticity, because skeletal muscles are capable of altering their active contractile properties in response to a number of different stimuli. We discuss the possibility that muscles are dynamically tuned to match the resonant properties of the entire musculoskeletal system.  相似文献   

12.
Until the 1990s, the passive and active length-tension (L-T) relationships of smooth muscle were believed to be static, with a single passive force value and a single maximum active force value for each muscle length. However, recent studies have demonstrated that the active L-T relationship in airway smooth muscle is dynamic and adapts to length changes over a period of time. Furthermore, our prior work showed that the passive L-T relationship in rabbit detrusor smooth muscle (DSM) is also dynamic and that in addition to viscoelastic behavior, DSM displays strain-softening behavior characterized by a loss of passive stiffness at shorter lengths following a stretch to a new longer length. This loss of passive stiffness appears to be irreversible when the muscle is not producing active force and during submaximal activation but is reversible on full muscle activation, which indicates that the stiffness component of passive force lost to strain softening is adjustable in DSM. The present study demonstrates that the passive L-T curve for DSM is not static and can shift along the length axis as a function of strain history and activation history. This study also demonstrates that adjustable passive stiffness (APS) can modulate total force (35% increase) for a given muscle length, while active force remains relatively unchanged (4% increase). This finding suggests that the structures responsible for APS act in parallel with the contractile apparatus, and the results are used to further justify the configuration of modeling elements within our previously proposed mechanical model for APS.  相似文献   

13.
The mechanism by which mechanical forces acting through skeletal muscle cells generate intracellular signaling, known as mechanotransduction, and the details of how gene expression and cell size are regulated by this signaling are poorly understood. Mitogen-activated protein kinases (MAPKs) are known to be involved in mechanically induced signaling in various cell types, including skeletal muscle where MAPK activation has been reported in response to contraction and passive stretch. Therefore, the investigation of MAPK activation in response to mechanical stress in skeletal muscle may yield important information about the mechanotransduction process. With the use of a rat plantaris in situ preparation, a wide range of peak tensions was generated through passive stretch and concentric, isometric, and eccentric contractile protocols, and the resulting phosphorylation of c-Jun NH(2)-terminal kinase (JNK), extracellular regulated kinase (ERK), and p38 MAPKs was assessed. Isoforms of JNK and ERK MAPKs were found to be phosphorylated in a tension-dependent manner, such that eccentric > isometric > concentric > passive stretch. Peak tension was found to be a better predictor of MAPK phosphorylation than time-tension integral or rate of tension development. Differences in maximal response amplitude and sensitivity between JNK and ERK MAPKs suggest different roles for these two kinase families in mechanically induced signaling. A strong linear relationship between p54 JNK phosphorylation and peak tension over a 15-fold range in tension (r(2) = 0.89, n = 32) was observed, supporting the fact that contraction-type differences can be explained in terms of tension and demonstrating that MAPK activation is a quantitative reflection of the magnitude of mechanical stress applied to muscle. Thus the measurement of MAPK activation, as an assay of skeletal muscle mechanotransduction, may help elucidate mechanically induced hypertrophy.  相似文献   

14.
15.
Sarcomere lengths, cell widths, indices of stiffness, and striation pattern uniformity were determined from radially compressed isolated adult cardiac myocytes from the rat. Single cells were bathed in a series of relaxing solutions containing 0-15% concentrations of nonpenetrating long chain polymers PVP-40 and dextran T-500. There were no significant changes observed in average sarcomere lengths or in striation pattern uniformity at any concentration. But cell widths decreased and stiffness increased in both polymers in a concentration-osmotic pressure-dependent relationship. Changes in cell width and stiffness were repeatable in either polymer, but only after an initial compression with a 10 or 15% concentration solution. The observed reduction in cell width after initial compression correlates well with known myofilament lattice spacing compression in rat cardiac muscle and is qualitatively similar to compressions seen in skeletal muscle preparations. But the cardiac myofilament lattice may not be as compressible as the skeletal lattice. Like skeletal muscle, stiffness exhibits a two-phase relationship where most of the increase occurs at solution osmotic pressures greater than 20 Torr. Finally, the inherently greater passive stiffness-length relationship of cardiac muscle is maintained at higher osmotic pressures such that the passive elastic modulus is strongly length dependent.  相似文献   

16.
Although the shortening of smooth muscle at physiological lengths is dominated by an interaction between external forces (loads) and internal forces, at very short lengths, internal forces appear to dominate the mechanical behavior of the active tissue. We tested the hypothesis that, under conditions of extreme shortening and low external force, the mechanical behavior of isolated canine tracheal smooth muscle tissue can be understood as a structure in which the force borne and exerted by the cross bridge and myofilament array is opposed by radially disposed connective tissue in the presence of an incompressible fluid matrix (cellular and extracellular). Strips of electrically stimulated tracheal muscle were allowed to shorten maximally under very low afterload, and large longitudinal sinusoidal vibrations (34 Hz, 1 s in duration, and up to 50% of the muscle length before vibration) were applied to highly shortened (active) tissue strips to produce reversible cross-bridge detachment. During the vibration, peak muscle force fell exponentially with successive forced elongations. After the episode, the muscle either extended itself or exerted a force against the tension transducer, depending on external conditions. The magnitude of this effect was proportional to the prior muscle stiffness and the amplitude of the vibration, indicating a recoil of strained connective tissue elements no longer opposed by cross-bridge forces. This behavior suggests that mechanical behavior at short lengths is dominated by tissue forces within a tensegrity-like structure made up of connective tissue, other extracellular matrix components, and active contractile elements.  相似文献   

17.
We have observed striking differences in the mechanical properties of airway smooth muscle preparations among different species. In this study, we provide a novel analysis on the influence of tissue elastance on smooth muscle shortening using previously published data from our laboratory. We have found that isolated human airways exhibit substantial passive tension in contrast to airways from the dog and pig, which exhibit little passive tension (<5% of maximal active force versus approximately 60% for human bronchi). In the dog and pig, airway preparations shorten up to 70% from Lmax (the length at which maximal active force occurs), whereas human airways shorten by only approximately 12% from Lmax. Isolated airways from the rabbit exhibit relatively low passive tension (approximately 22% Fmax) and shorten by 60% from Lmax. Morphologic evaluation of airway cross sections revealed that 25-35% of the airway wall is muscle in canine, porcine, and rabbit airways in contrast to approximately 9% in human airway preparations. We postulate that the large passive tension needed to stretch the muscle to Lmax reflects the high connective tissue content surrounding the smooth muscle, which limits shortening during smooth muscle contraction by imposing an elastic load, as well as by causing radial constraint.  相似文献   

18.
Cell mechanics studied by a reconstituted model tissue   总被引:11,自引:0,他引:11       下载免费PDF全文
Tissue models reconstituted from cells and extracellular matrix (ECM) simulate natural tissues. Cytoskeletal and matrix proteins govern the force exerted by a tissue and its stiffness. Cells regulate cytoskeletal structure and remodel ECM to produce mechanical changes during tissue development and wound healing. Characterization and control of mechanical properties of reconstituted tissues are essential for tissue engineering applications. We have quantitatively characterized mechanical properties of connective tissue models, fibroblast-populated matrices (FPMs), via uniaxial stretch measurements. FPMs resemble natural tissues in their exponential dependence of stress on strain and linear dependence of stiffness on force at a given strain. Activating cellular contractile forces by calf serum and disrupting F-actin by cytochalasin D yield "active" and "passive" components, which respectively emphasize cellular and matrix mechanical contributions. The strain-dependent stress and elastic modulus of the active component were independent of cell density above a threshold density. The same quantities for the passive component increased with cell number due to compression and reorganization of the matrix by the cells.  相似文献   

19.
The effects of long-term spaceflight(90-180 days) on the contractile and elastic characteristics ofthe human plantarflexor muscles were studied in 14 cosmonauts beforeand 2-3 days after landing. Despite countermeasures practicedaboard, spaceflight was found to induce a decrease in maximal isometrictorque (17%), whereas an index of maximal shortening velocity wasfound to increase (31%). In addition, maximal muscle activationevaluated during isokinetic tests decreased by 39%. Changes inmusculotendinous stiffness and whole joint stiffness were characterizedby means of quick-release movements and sinusoidal perturbations.Musculotendinous stiffness was found to be increased by 25%. Wholejoint stiffness decreased under passive conditions (21%), whereaswhole joint stiffness under active conditions remained unchanged afterspaceflight (1%). This invariance suggests an adaptive mechanism tocounterbalance the decrease in stiffness of passive structures by anincreased active stiffness. Changes in neural drive could participatein this equilibrium.

  相似文献   

20.
Tension and dynamic stiffness of passive rabbit psoas, rabbit semitendinosus, and waterbug indirect flight muscles were investigated to study the contribution of weak-binding cross-bridges and elastic filaments (titin and minititin) to the passive mechanical behavior of these muscles. Experimentally, a functional dissection of the relative contribution of actomyosin cross-bridges and titin and minititin was achieved by 1) comparing mechanically skinned muscle fibers before and after selective removal of actin filaments with a noncalcium-requiring gelsolin fragment (FX-45), and 2) studying passive tension and stiffness as a function of sarcomere length, ionic strength, temperature, and the inhibitory effect of a carboxyl-terminal fragment of smooth muscle caldesmon. Our data show that weak bridges exist in both rabbit skeletal muscle and insect flight muscle at physiological ionic strength and room temperature. In rabbit psoas fibers, weak bridge stiffness appears to vary with both thin-thick filament overlap and with the magnitude of passive tension. Plots of passive tension versus passive stiffness are multiphasic and strikingly similar for these three muscles of distinct sarcomere proportions and elastic proteins. The tension-stiffness plot appears to be a powerful tool in discerning changes in the mechanical behavior of the elastic filaments. The stress-strain and stiffness-strain curves of all three muscles can be merged into one, by normalizing strain rate and strain amplitude of the extensible segment of titin and minititin, further supporting the segmental extension model of resting tension development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号