首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   848670篇
  免费   97410篇
  国内免费   338篇
  2016年   9182篇
  2015年   12642篇
  2014年   15050篇
  2013年   21856篇
  2012年   23960篇
  2011年   24464篇
  2010年   16434篇
  2009年   15360篇
  2008年   21853篇
  2007年   23088篇
  2006年   21596篇
  2005年   20814篇
  2004年   20805篇
  2003年   20200篇
  2002年   19676篇
  2001年   34893篇
  2000年   35424篇
  1999年   28248篇
  1998年   10064篇
  1997年   10612篇
  1996年   10159篇
  1995年   10029篇
  1994年   9938篇
  1993年   9859篇
  1992年   24967篇
  1991年   24732篇
  1990年   24519篇
  1989年   23992篇
  1988年   22416篇
  1987年   21471篇
  1986年   20121篇
  1985年   20636篇
  1984年   17206篇
  1983年   15049篇
  1982年   11675篇
  1981年   10772篇
  1980年   10073篇
  1979年   16924篇
  1978年   13276篇
  1977年   12388篇
  1976年   11783篇
  1975年   12956篇
  1974年   13785篇
  1973年   13541篇
  1972年   12761篇
  1971年   11278篇
  1970年   9862篇
  1969年   9509篇
  1968年   8816篇
  1967年   7671篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
More than 50 hereditary lysosomal storage disorders (LSDs) are currently described. Most of these disorders are due to a deficiency of certain hydrolases/glycosidases and subsequent accumulation of nonhydrolyzable carbohydrate-containing compounds in lysosomes. Such accumulation causing hypertrophy of the lysosomal compartment is a characteristic feature of affected cells in LSDs. The investigation of biochemical and cellular parameters is of particular interest for understanding “life” of lysosomes in the normal state and in LSDs. This review highlights the wide spectrum of biochemical and morphological changes during developing LSDs that are extremely critical for many metabolic processes inside the various cells and tissues of affected persons. The data presented will help establish new complex strategies for metabolic correction of LSDs.  相似文献   
2.
Collective migration of mechanically coupled cell layers is a notable feature of wound healing, embryonic development, and cancer progression. In confluent epithelial sheets, the dynamics have been found to be highly heterogeneous, exhibiting spontaneous formation of swirls, long-range correlations, and glass-like dynamic arrest as a function of cell density. In contrast, the flow-like properties of one-sided cell-sheet expansion in confining geometries are not well understood. Here, we studied the short- and long-term flow of Madin-Darby canine kidney (MDCK) cells as they moved through microchannels. Using single-cell tracking and particle image velocimetry (PIV), we found that a defined averaged stationary cell current emerged that exhibited a velocity gradient in the direction of migration and a plug-flow-like profile across the advancing sheet. The observed flow velocity can be decomposed into a constant term of directed cell migration and a diffusion-like contribution that increases with density gradient. The diffusive component is consistent with the cell-density profile and front propagation speed predicted by the Fisher-Kolmogorov equation. To connect diffusion-mediated transport to underlying cellular motility, we studied single-cell trajectories and occurrence of vorticity. We discovered that the directed large-scale cell flow altered fluctuations in cellular motion at short length scales: vorticity maps showed a reduced frequency of swirl formation in channel flow compared with resting sheets of equal cell density. Furthermore, under flow, single-cell trajectories showed persistent long-range, random-walk behavior superimposed on drift, whereas cells in resting tissue did not show significant displacements with respect to neighboring cells. Our work thus suggests that active cell migration manifests itself in an underlying, spatially uniform drift as well as in randomized bursts of short-range correlated motion that lead to a diffusion-mediated transport.  相似文献   
3.
4.
5.
Human organ-on-a-chip systems for drug screening have evolved as feasible alternatives to animal models, which are unreliable, expensive, and at times erroneous. While chips featuring single organs can be of great use for both pharmaceutical testing and basic organ-level studies, the huge potential of the organ-on-a-chip technology is revealed by connecting multiple organs on one chip to create a single integrated system for sophisticated fundamental biological studies and devising therapies for disease. Furthermore, since most organ-on-a-chip systems require special protocols with organ-specific media for the differentiation and maturation of the tissues, multi-organ systems will need to be temporally customizable and flexible in terms of the time point of connection of the individual organ units. We present a customizable Lego®-like plug & play system, μOrgano, which enables initial individual culture of single organ-on-a-chip systems and subsequent connection to create integrated multi-organ microphysiological systems. As a proof of concept, the μOrgano system was used to connect multiple heart chips in series with excellent cell viability and spontaneously physiological beat rates.  相似文献   
6.
Many intracellular bacterial pathogens possess virulence factors that prevent detection and killing by macrophages. However, similar virulence factors in non-pathogenic bacteria are less well-characterized and may contribute to the pathogenesis of chronic inflammatory conditions such as Crohn’s disease. We hypothesize that the small heat shock proteins IbpAB, which have previously been shown to reduce oxidative damage to proteins in vitro and be upregulated in luminal non-pathogenic Escherichia strain NC101 during experimental colitis in vivo, protect commensal E. coli from killing by macrophage-derived reactive oxygen species (ROS). Using real-time PCR, we measured ibpAB expression in commensal E. coli NC101 within wild-type (wt) and ROS-deficient (gp91phox-/-) macrophages and in NC101 treated with the ROS generator paraquat. We also quantified survival of NC101 and isogenic mutants in wt and gp91phox-/- macrophages using gentamicin protection assays. Similar assays were performed using a pathogenic E. coli strain O157:H7. We show that non-pathogenic E. coli NC101inside macrophages upregulate ibpAB within 2 hrs of phagocytosis in a ROS-dependent manner and that ibpAB protect E. coli from killing by macrophage-derived ROS. Moreover, we demonstrate that ROS-induced ibpAB expression is mediated by the small E. coli regulatory RNA, oxyS. IbpAB are not upregulated in pathogenic E. coli O157:H7 and do not affect its survival within macrophages. Together, these findings indicate that ibpAB may be novel virulence factors for certain non-pathogenic E. coli strains.  相似文献   
7.
The maximum exponential growth rate, the Malthusian parameter (MP), is commonly used as a measure of fitness in experimental studies of adaptive evolution and of the effects of antibiotic resistance and other genes on the fitness of planktonic microbes. Thanks to automated, multi-well optical density plate readers and computers, with little hands-on effort investigators can readily obtain hundreds of estimates of MPs in less than a day. Here we compare estimates of the relative fitness of antibiotic susceptible and resistant strains of E. coli, Pseudomonas aeruginosa and Staphylococcus aureus based on MP data obtained with automated multi-well plate readers with the results from pairwise competition experiments. This leads us to question the reliability of estimates of MP obtained with these high throughput devices and the utility of these estimates of the maximum growth rates to detect fitness differences.  相似文献   
8.
L-asparaginase (ASP) is a key element in the treatment of paediatric acute lymphoblastic leukaemia (ALL). However, hypersensitivity reactions (HSRs) to ASP are major challenges in paediatric patients. Our aim was to investigate genetic variants that may influence the risk to Escherichia coli-derived ASP hypersensitivity. Sample and clinical data collection was carried out from 576 paediatric ALL patients who were treated according to protocols from the Berlin—Frankfurt—Münster Study Group. A total of 20 single nucleotide polymorphisms (SNPs) in GRIA1 and GALNT10 genes were genotyped. Patients with GRIA1 rs4958351 AA/AG genotype showed significantly reduced risk to ASP hypersensitivity compared to patients with GG genotype in the T-cell ALL subgroup (OR = 0.05 (0.01–0.26); p = 4.70E-04), while no such association was found in pre-B-cell ALL. In the medium risk group two SNPs of GRIA1 (rs2055083 and rs707176) were associated significantly with the occurrence of ASP hypersensitivity (OR = 0.21 (0.09–0.53); p = 8.48E-04 and OR = 3.02 (1.36–6.73); p = 6.76E-03, respectively). Evaluating the genders separately, however, the association of rs707176 with ASP HSRs was confined only to females. Our results suggest that genetic variants of GRIA1 might influence the risk to ASP hypersensitivity, but subgroups of patients can differ significantly in this respect.  相似文献   
9.
ImportanceSudden cardiac death is a leading cause of mortality in psychiatric patients. Long QT (LQT) is common in this population and predisposes to Torsades-de-Pointes (TdP) and subsequent mortality.ObjectiveTo estimate the cost-effectiveness of electrocardiographic screening to detect LQT in psychiatric inpatients.ResultsIn the base-case scenario, the numbers of patients needed to screen were 1128 and 2817 to avoid one TdP and one death, respectively. The ICER of systematic ECG screening was $8644 (95%CI, 3144-82 498) per QALY. The probability of cost-effectiveness was 96% at a willingness-to-pay of $50 000 for one QALY. In sensitivity analyses, results were sensitive to the case-fatality of TdP episodes and to the TdP reduction following the diagnosis of LQT.

Conclusion and Relevance

In psychiatric hospitals, performing systematic ECG screening at admission help reduce the number of sudden cardiac deaths in a cost-effective fashion.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号