首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We sequenced and analyzed the genome of a commensal Escherichia coli (E. coli) strain SE11 (O152:H28) recently isolated from feces of a healthy adult and classified into E. coli phylogenetic group B1. SE11 harbored a 4.8 Mb chromosome encoding 4679 protein-coding genes and six plasmids encoding 323 protein-coding genes. None of the SE11 genes had sequence similarity to known genes encoding phage- and plasmid-borne virulence factors found in pathogenic E. coli strains. The comparative genome analysis with the laboratory strain K-12 MG1655 identified 62 poorly conserved genes between these two non-pathogenic strains and 1186 genes absent in MG1655. These genes in SE11 were mostly encoded in large insertion regions on the chromosome or in the plasmids, and were notably abundant in genes of fimbriae and autotransporters, which are cell surface appendages that largely contribute to the adherence ability of bacteria to host cells and bacterial conjugation. These data suggest that SE11 may have evolved to acquire and accumulate the functions advantageous for stable colonization of intestinal cells, and that the adhesion-associated functions are important for the commensality of E. coli in human gut habitat.Key words: Escherichia coli, commensal, human gut, genome sequencing  相似文献   

2.
Escherichia coli O157:H7 is a food-borne bacterium that causes hemorrhagic diarrhea and hemolytic uremic syndrome in humans. While cattle are a known source of E. coli O157:H7 exposure resulting in human infection, environmental reservoirs may also be important sources of infection for both cattle and humans. Bacteriophage-encoded Shiga toxins (Stx) carried by E. coli O157:H7 may provide a selective advantage for survival of these bacteria in the environment, possibly through their toxic effects on grazing protozoa. To determine Stx effects on protozoan grazing, we co-cultured Paramecium caudatum, a common ciliate protozoon in cattle water sources, with multiple strains of Shiga-toxigenic E. coli O157:H7 and non-Shiga toxigenic cattle commensal E. coli. Over three days at ambient laboratory temperature, P. caudatum consistently reduced both E. coli O157:H7 and non-Shiga toxigenic E. coli populations by 1–3 log cfu. Furthermore, a wild-type strain of Shiga-toxigenic E. coli O157:H7 (EDL933) and isogenic mutants lacking the A subunit of Stx 2a, the entire Stx 2a-encoding bacteriophage, and/or the entire Stx 1-encoding bacteriophage were grazed with similar efficacy by both P. caudatum and Tetrahymena pyriformis (another ciliate protozoon). Therefore, our data provided no evidence of a protective effect of either Stx or the products of other bacteriophage genes on protozoan predation of E. coli. Further research is necessary to determine if the grazing activity of naturally-occurring protozoa in cattle water troughs can serve to decrease cattle exposure to E. coli O157:H7 and other Shiga-toxigenic E. coli.  相似文献   

3.
NO is considered to be a key macrophage-derived cytotoxic effector during Trypanosoma cruzi infection. On the other hand, the microbicidal properties of reactive oxygen species (ROS) are well recognized, but little importance has been attributed to them during in vivo infection with T. cruzi. In order to investigate the role of ROS in T. cruzi infection, mice deficient in NADPH phagocyte oxidase (gp91phox −/− or phox KO) were infected with Y strain of T. cruzi and the course of infection was followed. phox KO mice had similar parasitemia, similar tissue parasitism and similar levels of IFN-γ and TNF in serum and spleen cell culture supernatants, when compared to wild-type controls. However, all phox KO mice succumbed to infection between day 15 and 21 after inoculation with the parasite, while 60% of wild-type mice were alive 50 days after infection. Further investigation demonstrated increased serum levels of nitrite and nitrate (NOx) at day 15 of infection in phox KO animals, associated with a drop in blood pressure. Treatment with a NOS2 inhibitor corrected the blood pressure, implicating NOS2 in this phenomenon. We postulate that superoxide reacts with NO in vivo, preventing blood pressure drops in wild type mice. Hence, whilst superoxide from phagocytes did not play a critical role in parasite control in the phox KO animals, its production would have an important protective effect against blood pressure decline during infection with T. cruzi.  相似文献   

4.
Oxidative damage is an important mechanism in X-ray-induced cell death. Radiolysis of water molecules is a source of reactive oxygen species (ROS) that contribute to X-ray-induced cell death. In this study, we showed by ROS detection and a cell survival assay that NADPH oxidase has a very important role in X-ray-induced cell death. Under X-ray irradiation, the upregulation of the expression of NADPH oxidase membrane subunit gp91phox was dose-dependent. Meanwhile, the cytoplasmic subunit p47phox was translocated to the cell membrane and localized with p22phox and gp91phox to form reactive NADPH oxidase. Our data suggest, for the first time, that NADPH oxidase-mediated generation of ROS is an important contributor to X-ray-induced cell death. This suggests a new target for combined gene transfer and radiotherapy.  相似文献   

5.
The persistence of Shiga-like toxin producing E. coli (STEC) strains in the agricultural soil creates serious threat to human health through fresh vegetables growing on them. However, the survival of STEC strains in Indian tropical soils is not yet understood thoroughly. Additionally how the survival of STEC strain in soil diverges with non-pathogenic and genetically modified E. coli strains is also not yet assessed. Hence in the present study, the survival pattern of STEC strain (O157-TNAU) was compared with non-pathogenic (MTCC433) and genetically modified (DH5α) strains on different tropical agricultural soils and on a vegetable growing medium, cocopeat under controlled condition. The survival pattern clearly discriminated DH5α from MTCC433 and O157-TNAU, which had shorter life (40 days) than those compared (60 days). Similarly, among the soils assessed, the red laterite and tropical latosol supported longer survival of O157-TNAU and MTCC433 as compared to wetland and black cotton soils. In cocopeat, O157 recorded significantly longer survival than other two strains. The survival data were successfully analyzed using Double-Weibull model and the modeling parameters were correlated with soil physico-chemical and biological properties using principal component analysis (PCA). The PCA of all the three strains revealed that pH, microbial biomass carbon, dehydrogenase activity and available N and P contents of the soil decided the survival of E. coli strains in those soils and cocopeat. The present research work suggests that the survival of O157 differs in tropical Indian soils due to varied physico-chemical and biological properties and the survival is much shorter than those reported in temperate soils. As the survival pattern of non-pathogenic strain, MTCC433 is similar to O157-TNAU in tropical soils, the former can be used as safe model organism for open field studies.  相似文献   

6.
Cattle are the primary reservoir of the foodborne pathogen Escherichia coli O157:H7, with the concentration and frequency of E. coli O157:H7 shedding varying substantially among individual hosts. The term ‘‘super-shedder” has been applied to cattle that shed ≥104 cfu E. coli O157:H7/g of feces. Super-shedders have been reported to be responsible for the majority of E. coli O157:H7 shed into the environment. The objective of this study was to determine if there are phenotypic and/or genotypic differences between E. coli O157:H7 isolates obtained from super-shedder compared to low-shedder cattle. From a total of 784 isolates, four were selected from low-shedder steers and six isolates from super-shedder steers (4.01–8.45 log cfu/g feces) for whole genome sequencing. Isolates were phage and clade typed, screened for substrate utilization, pH sensitivity, virulence gene profiles and Stx bacteriophage insertion (SBI) sites. A range of 89–2473 total single nucleotide polymorphisms (SNPs) were identified when sequenced strains were compared to E. coli O157:H7 strain Sakai. More non-synonymous SNP mutations were observed in low-shedder isolates. Pan-genomic and SNPs comparisons did not identify genetic segregation between super-shedder or low-shedder isolates. All super-shedder isolates and 3 of 4 of low-shedder isolates were typed as phage type 14a, SBI cluster 3 and SNP clade 2. Super-shedder isolates displayed increased utilization of galactitol, thymidine and 3-O-β-D-galactopyranosyl-D-arabinose when compared to low-shedder isolates, but no differences in SNPs were observed in genes encoding for proteins involved in the metabolism of these substrates. While genetic traits specific to super-shedder isolates were not identified in this study, differences in the level of gene expression or genes of unknown function may still contribute to some strains of E. coli O157:H7 reaching high densities within bovine feces.  相似文献   

7.
Humans play little role in the epidemiology of Escherichia coli O157:H7, a commensal bacterium of cattle. Why then does E. coli O157:H7 code for virulence determinants, like the Shiga toxins (Stxs), responsible for the morbidity and mortality of colonized humans? One possibility is that the virulence of these bacteria to humans is coincidental and these virulence factors evolved for and are maintained for other roles they play in the ecology of these bacteria. Here, we test the hypothesis that the carriage of the Stx-encoding prophage of E. coli O157:H7 increases the rate of survival of E. coli in the presence of grazing protozoa, Tetrahymena pyriformis. In the presence but not the absence of Tetrahymena, the carriage of the Stx-encoding prophage considerably augments the fitness of E. coli K-12 as well as clinical isolates of E. coli O157 by increasing the rate of survival of the bacteria in the food vacuoles of these ciliates. Grazing protozoa in the environment or natural host are likely to play a significant role in the ecology and maintenance of the Stx-encoding prophage of E. coli O157:H7 and may well contribute to the evolution of the virulence of these bacteria to colonize humans.  相似文献   

8.
Escherichia coli is an important cause of bovine mastitis and can cause both severe inflammation with a short-term transient infection, as well as less severe, but more chronic inflammation and infection persistence. E. coli is a highly diverse organism that has been classified into a number of different pathotypes or pathovars, and mammary pathogenic E. coli (MPEC) has been proposed as a new such pathotype. The purpose of this study was to use genome sequence data derived from both transient and persistent MPEC isolates (two isolates of each phenotype) to construct a genome-based phylogeny that places MPEC in its phylogenetic context with other E. coli pathovars. A subsidiary goal was to conduct comparative genomic analyses of these MPEC isolates with other E. coli pathovars to provide a preliminary perspective on loci that might be correlated with the MPEC phenotype. Both concatenated and consensus tree phylogenies did not support MPEC monophyly or the monophyly of either transient or persistent phenotypes. Three of the MPEC isolates (ECA-727, ECC-Z, and ECA-O157) originated from within the predominately commensal clade of E. coli, referred to as phylogroup A. The fourth MPEC isolate, of the persistent phenotype (ECC-1470), was sister group to an isolate of ETEC, falling within the E. coli B1 clade. This suggests that the MPEC phenotype has arisen on numerous independent occasions and that this has often, although not invariably, occurred from commensal ancestry. Examination of the genes present in the MPEC strains relative to the commensal strains identified a consistent presence of the type VI secretion system (T6SS) in the MPEC strains, with only occasional representation in commensal strains, suggesting that T6SS may be associated with MPEC pathogenesis and/or as an inter-bacterial competitive attribute and therefore could represent a useful target to explore for the development of MPEC specific inhibitors.  相似文献   

9.
Staphylococcus aureus is a human commensal organism and opportunist pathogen, causing potentially fatal disease. The presence of non-pathogenic microflora or their components, at the point of infection, dramatically increases S. aureus pathogenicity, a process termed augmentation. Augmentation is associated with macrophage interaction but by a hitherto unknown mechanism. Here, we demonstrate a breadth of cross-kingdom microorganisms can augment S. aureus disease and that pathogenesis of Enterococcus faecalis can also be augmented. Co-administration of augmenting material also forms an efficacious vaccine model for S. aureus. In vitro, augmenting material protects S. aureus directly from reactive oxygen species (ROS), which correlates with in vivo studies where augmentation restores full virulence to the ROS-susceptible, attenuated mutant katA ahpC. At the cellular level, augmentation increases bacterial survival within macrophages via amelioration of ROS, leading to proliferation and escape. We have defined the molecular basis for augmentation that represents an important aspect of the initiation of infection.  相似文献   

10.
11.

Background

Previously we found that E. coli O157:H7 inoculated into ligated pig intestine formed attaching and effacing (AE) lesions in some pigs but not in others. The present study evaluated changes in the microbial community and in virulence gene expression in E. coli O157:H7 in ligated pig intestine in which the bacteria formed AE lesions or failed to form AE lesions.

Methodology/Principal Findings

The intestinal microbiota was assessed by RNA-based denaturing gradient gel electrophoresis (DGGE) analysis. The DGGE banding patterns showed distinct differences involving two bands which had increased intensity specifically in AE-negative pigs (AE- bands) and several bands which were more abundant in AE-positive pigs. Sequence analysis revealed that the two AE- bands belonged to Veillonella caviae, a species with probiotic properties, and Bacteroides sp. Concurrent with the differences in microbiota, gene expression analysis by quantitative PCR showed that, compared with AE negative pigs, E. coli O157:H7 in AE positive pigs had upregulated genes for putative adhesins, non-LEE encoded nleA and quorum sensing qseF, acid resistance gene ureD, and genes from the locus of enterocyte effacement (LEE).

Conclusions/Significance

The present study demonstrated that AE-positive pigs had reduced activities or populations of Veillonella caviae and Bacterioides sp. compared with AE-negative pigs. Further studies are required to understand how the microbiota was changed and the role of these organisms in the control of E. coli O157:H7.  相似文献   

12.

Background

During Trypanosoma cruzi infection, macrophages produce reactive oxygen species (ROS) in a process called respiratory burst. Several works have aimed to elucidate the role of ROS during T. cruzi infection and the results obtained are sometimes contradictory. T. cruzi has a highly efficiently regulated antioxidant machinery to deal with the oxidative burst, but the parasite macromolecules, particularly DNA, may still suffer oxidative damage. Guanine (G) is the most vulnerable base and its oxidation results in formation of 8-oxoG, a cellular marker of oxidative stress.

Methodology/Principal Findings

In order to investigate the contribution of ROS in T. cruzi survival and infection, we utilized mice deficient in the gp91phox (Phox KO) subunit of NADPH oxidase and parasites that overexpress the enzyme EcMutT (from Escherichia coli) or TcMTH (from T. cruzi), which is responsible for removing 8-oxo-dGTP from the nucleotide pool. The modified parasites presented enhanced replication inside murine inflammatory macrophages from C57BL/6 WT mice when compared with control parasites. Interestingly, when Phox KO macrophages were infected with these parasites, we observed a decreased number of all parasites when compared with macrophages from C57BL/6 WT. Scavengers for ROS also decreased parasite growth in WT macrophages. In addition, treatment of macrophages or parasites with hydrogen peroxide increased parasite replication in Phox KO mice and in vivo.

Conclusions

Our results indicate a paradoxical role for ROS since modified parasites multiply better inside macrophages, but proliferation is significantly reduced when ROS is removed from the host cell. Our findings suggest that ROS can work like a signaling molecule, contributing to T. cruzi growth inside the cells.  相似文献   

13.
14.
Iron is essential for Escherichia coli growth and survival in the host and the external environment, but its availability is generally low due to the poor solubility of its ferric form in aqueous environments and the presence of iron-withholding proteins in the host. Most E. coli can increase access to iron by excreting siderophores such as enterobactin, which have a very strong affinity for Fe3+. A smaller proportion of isolates can generate up to 3 additional siderophores linked with pathogenesis; aerobactin, salmochelin, and yersiniabactin. However, non-pathogenic E. coli are also able to synthesise these virulence-associated siderophores. This raises questions about their role in the ecology of E. coli, beyond virulence, and whether specific siderophores might be linked with persistence in the external environment. Under the assumption that selection favours phenotypes that confer a fitness advantage, we compared siderophore production and gene distribution in E. coli isolated either from agricultural plants or the faeces of healthy mammals. This population-level comparison has revealed that under iron limiting growth conditions plant-associated isolates produced lower amounts of siderophores than faecal isolates. Additionally, multiplex PCR showed that environmental isolates were less likely to contain loci associated with aerobactin and yersiniabactin synthesis. Although aerobactin was linked with strong siderophore excretion, a significant difference in production was still observed between plant and faecal isolates when the analysis was restricted to strains only able to synthesise enterobactin. This finding suggests that the regulatory response to iron limitation may be an important trait associated with adaptation to the non-host environment. Our findings are consistent with the hypothesis that the ability to produce multiple siderophores facilitates E. coli gut colonisation and plays an important role in E. coli commensalism.  相似文献   

15.
Defining the mechanisms of Mycobacterium tuberculosis (Mtb) persistence in the host macrophage and identifying mycobacterial factors responsible for it are keys to better understand tuberculosis pathogenesis. The emerging picture from ongoing studies of macrophage deactivation by Mtb suggests that ingested bacilli secrete various virulence determinants that alter phagosome biogenesis, leading to arrest of Mtb vacuole interaction with late endosomes and lysosomes. While most studies focused on Mtb interference with various regulators of the endosomal compartment, little attention was paid to mechanisms by which Mtb neutralizes early macrophage responses such as the NADPH oxidase (NOX2) dependent oxidative burst. Here we applied an antisense strategy to knock down Mtb nucleoside diphosphate kinase (Ndk) and obtained a stable mutant (Mtb Ndk-AS) that displayed attenuated intracellular survival along with reduced persistence in the lungs of infected mice. At the molecular level, pull-down experiments showed that Ndk binds to and inactivates the small GTPase Rac1 in the macrophage. This resulted in the exclusion of the Rac1 binding partner p67phox from phagosomes containing Mtb or Ndk-coated latex beads. Exclusion of p67phox was associated with a defect of both NOX2 assembly and production of reactive oxygen species (ROS) in response to wild type Mtb. In contrast, Mtb Ndk-AS, which lost the capacity to disrupt Rac1-p67phox interaction, induced a strong ROS production. Given the established link between NOX2 activation and apoptosis, the proportion of Annexin V positive cells and levels of intracellular active caspase 3 were significantly higher in cells infected with Mtb Ndk-AS compared to wild type Mtb. Thus, knock down of Ndk converted Mtb into a pro-apoptotic mutant strain that has a phenotype of increased susceptibility to intracellular killing and reduced virulence in vivo. Taken together, our in vitro and in vivo data revealed that Ndk contributes significantly to Mtb virulence via attenuation of NADPH oxidase-mediated host innate immunity.  相似文献   

16.

Background

Shigatoxigenic Escherichia coli (STEC) and enterotoxigenic E. coli (ETEC) cause serious foodborne infections in humans. These two pathogroups are defined based on the pathogroup-associated virulence genes: stx encoding Shiga toxin (Stx) for STEC and elt encoding heat-labile and/or est encoding heat-stable enterotoxin (ST) for ETEC. The study investigated the genomics of STEC/ETEC hybrid strains to determine their phylogenetic position among E. coli and to define the virulence genes they harbor.

Methods

The whole genomes of three STEC/ETEC strains possessing both stx and est genes were sequenced using PacBio RS sequencer. Two of the strains were isolated from the patients, one with hemolytic uremic syndrome, and one with diarrhea. The third strain was of bovine origin. Core genome analysis of the shared chromosomal genes and comparison with E. coli and Shigella spp. reference genomes was performed to determine the phylogenetic position of the STEC/ETEC strains. In addition, a set of virulence genes and ETEC colonization factors were extracted from the genomes. The production of Stx and ST were studied.

Results

The human STEC/ETEC strains clustered with strains representing ETEC, STEC, enteroaggregative E. coli, and commensal and laboratory-adapted E. coli. However, the bovine STEC/ETEC strain formed a remote cluster with two STECs of bovine origin. All three STEC/ETEC strains harbored several other virulence genes, apart from stx and est, and lacked ETEC colonization factors. Two STEC/ETEC strains produced both toxins and one strain Stx only.

Conclusions

This study shows that pathogroup-associated virulence genes of different E. coli can co-exist in strains originating from different phylogenetic lineages. The possibility of virulence genes to be associated with several E. coli pathogroups should be taken into account in strain typing and in epidemiological surveillance. Development of novel hybrid E. coli strains may cause a new public health risk, which challenges the traditional diagnostics of E. coli infections.  相似文献   

17.
18.
ε-Poly-l-lysine (ε-PL)2 is widely used as an antibacterial agent because of its broad antimicrobial spectrum. However, the mechanism of ε-PL against pathogens at the molecular level has not been elucidated. This study investigated the antibacterial activity and mechanism of ε-PL against Escherichia coli O157:H7 CMCC44828. Propidium monoazide-PCR test results indicated that the threshold condition of ε-PL for complete membrane lysis of E. coli O157:H7 was 10 μg/mL (90% mortality for 5 μg/mL). Further verification of the destructive effect of ε-PL on cell structure was performed by atomic force microscopy and transmission electron microscopy. Results showed a positive correlation between reactive oxygen species (ROS) 3 levels and ε-PL concentration in E. coli O157:H7 cells. Moreover, the mortality of E. coli O157:H7 was reduced when antioxidant N-acetylcysteine was added. Results from real-time quantitative PCR (RT-qPCR) 4 indicated that the expression levels of oxidative stress genes sodA and oxyR were up-regulated 4- and 16-fold, respectively, whereas virulence genes eaeA and espA were down-regulated after ε-PL treatment. Expression of DNA damage response (SOS response) 5 regulon genes recA and lexA were also affected by ε-PL. In conclusion, the antibacterial mechanism of ε-PL against E. coli O157:H7 may be attributed to disturbance on membrane integrity, oxidative stress by ROS, and effects on various gene expressions, such as regulation of oxidative stress, SOS response, and changes in virulence.  相似文献   

19.
Antagonistic interactions are likely important driving forces of the evolutionary process underlying bacterial genome complexity and diversity. We hypothesized that the ability of evolved bacteria to escape specific components of host innate immunity, such as phagocytosis and killing by macrophages (MΦ), is a critical trait relevant in the acquisition of bacterial virulence. Here, we used a combination of experimental evolution, phenotypic characterization, genome sequencing and mathematical modeling to address how fast, and through how many adaptive steps, a commensal Escherichia coli (E. coli) acquire this virulence trait. We show that when maintained in vitro under the selective pressure of host MΦ commensal E. coli can evolve, in less than 500 generations, virulent clones that escape phagocytosis and MΦ killing in vitro, while increasing their pathogenicity in vivo, as assessed in mice. This pathoadaptive process is driven by a mechanism involving the insertion of a single transposable element into the promoter region of the E. coli yrfF gene. Moreover, transposition of the IS186 element into the promoter of Lon gene, encoding an ATP-dependent serine protease, is likely to accelerate this pathoadaptive process. Competition between clones carrying distinct beneficial mutations dominates the dynamics of the pathoadaptive process, as suggested from a mathematical model, which reproduces the observed experimental dynamics of E. coli evolution towards virulence. In conclusion, we reveal a molecular mechanism explaining how a specific component of host innate immunity can modulate microbial evolution towards pathogenicity.  相似文献   

20.
Capnocytophaga canimorsus is a Gram-negative commensal of dog's mouth causing severe human infections. A strain isolated from a human fatal infection was recently shown to have a sialidase, to inhibit the bactericidal activity of macrophages and to block the release of nitric oxide by LPS-stimulated macrophages. The present study aimed at determining the prevalence of C. canimorsus in dogs and the occurrence of these hypothetical virulence factors. C. canimorsus could be retrieved from the saliva of 61 dogs out of 106 sampled. Like in clinical isolates, all dog strains had a sialidase and 60% blocked the killing of phagocytosed Escherichia coli by macrophages. In contrast, only 6.5% of dog strains blocked the release of nitric oxide by LPS-challenged macrophages, suggesting that this property might contribute to virulence. The comparative analysis of 69 16S rDNA sequences revealed the existence of C. canimorsus strains that could be misdiagnosed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号