首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   55篇
  2021年   2篇
  2014年   5篇
  2013年   19篇
  2012年   4篇
  2011年   3篇
  2010年   5篇
  2009年   4篇
  2008年   4篇
  2007年   10篇
  2006年   4篇
  2005年   7篇
  2004年   5篇
  2003年   8篇
  2002年   8篇
  2001年   2篇
  2000年   7篇
  1999年   7篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1992年   11篇
  1991年   11篇
  1990年   11篇
  1989年   17篇
  1988年   15篇
  1987年   12篇
  1986年   10篇
  1985年   11篇
  1984年   10篇
  1983年   7篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1977年   3篇
  1960年   1篇
排序方式: 共有231条查询结果,搜索用时 77 毫秒
1.
Collective migration of mechanically coupled cell layers is a notable feature of wound healing, embryonic development, and cancer progression. In confluent epithelial sheets, the dynamics have been found to be highly heterogeneous, exhibiting spontaneous formation of swirls, long-range correlations, and glass-like dynamic arrest as a function of cell density. In contrast, the flow-like properties of one-sided cell-sheet expansion in confining geometries are not well understood. Here, we studied the short- and long-term flow of Madin-Darby canine kidney (MDCK) cells as they moved through microchannels. Using single-cell tracking and particle image velocimetry (PIV), we found that a defined averaged stationary cell current emerged that exhibited a velocity gradient in the direction of migration and a plug-flow-like profile across the advancing sheet. The observed flow velocity can be decomposed into a constant term of directed cell migration and a diffusion-like contribution that increases with density gradient. The diffusive component is consistent with the cell-density profile and front propagation speed predicted by the Fisher-Kolmogorov equation. To connect diffusion-mediated transport to underlying cellular motility, we studied single-cell trajectories and occurrence of vorticity. We discovered that the directed large-scale cell flow altered fluctuations in cellular motion at short length scales: vorticity maps showed a reduced frequency of swirl formation in channel flow compared with resting sheets of equal cell density. Furthermore, under flow, single-cell trajectories showed persistent long-range, random-walk behavior superimposed on drift, whereas cells in resting tissue did not show significant displacements with respect to neighboring cells. Our work thus suggests that active cell migration manifests itself in an underlying, spatially uniform drift as well as in randomized bursts of short-range correlated motion that lead to a diffusion-mediated transport.  相似文献   
2.
The conformational properties of the cyclic dinucleotide d less than pApA greater than were studied by means of molecular mechanics calculations in which a multiconformation analysis was combined with minimum energy calculations. In this approach models of possible conformers are built by varying the torsion angles of the molecule systematically. These models are then subjected to energy minimization; in the present investigation use was made of the AMBER Force field. It followed that the lowest energy conformer has a pseudo-two-fold axis of symmetry. In this conformer the deoxyribose sugars adopt a N-type conformation. The conformation of the sugar-phosphate backbone is determined by the following torsion angles: alpha +, beta t, gamma +, epsilon t and zeta +. The conformation of this ringsystem corresponds to the structure derived earlier by means of NMR spectroscopy and X-ray diffraction. The observation of a preference for N-type sugar conformations in this molecule can be explained by the steric hindrance induced between opposite H3' atoms when one sugar is switched from N- to S-type puckers. The sugars can in principle switch from N- to S-type conformations, but this requires at least the transition of gamma + to gamma -. In this process the molecule obtains an extended shape in which the bases switch from a pseudo-axial to a pseudo-equatorial position. The calculations demonstrate that, apart from the results obtained for the lowest energy conformation, the 180 degrees change in the propagation direction of the phosphate backbone can be achieved by several different combinations of the backbone torsion angles. It appeared that in the low energy conformers five higher order correlations are found. The combination of torsion angles which are involved in changes in the propagation direction of the sugar-phosphate backbone in DNA-hairpin loops and in tRNA, are found in the dataset obtained for cyclic d less than pApA greater than. It turns out, that in the available examples, 180 degrees changes in the backbone direction are localized between two adjacent nucleotides.  相似文献   
3.
As part of a program towards the development of novel antibiotics, a convenient method for solid-phase synthesis of the cyclic cationic peptide polymyxin B1 and analogues thereof is described. The methodology, based on cleavage-by-cyclization using Kenner's safety-catch linker, yields crude products with purities ranging from 37-67%. Antibacterial assays revealed that analogues 23-26, in which the (S)-6-methyloctanoic acid moiety is replaced with shorter acyl chains, exhibit distinct antimicrobial activity. The results suggest that the length of the acyl chain is rather critical for antimicrobial activity. On the other hand, substitution of the hydrophobic ring-segment D-Phe-6/Leu-7 in polymyxin B1 with dipeptide mimics (i.e. analogues 27-33) resulted in almost complete loss of antimicrobial activity.  相似文献   
4.
The naturally occurring DNA-nucleopeptide H-Asp-Ser[5'-pAAAGTAAGCC-3']-Glu-OH was prepared via a solid-phase phosphite triester approach using N-2-(tert-butyldiphenylsilyloxymethyl)benzoyl protected nucleosides. The oligonucleotide was linked via the extremely base-labile oxalyl ester anchor to the solid support.  相似文献   
5.
Peptidomimetic glutathione analogues as novel gammaGT stable GST inhibitors.   总被引:11,自引:0,他引:11  
Elevated levels of glutathione-S-transferase (GST) isoenzymes are found in many tumor cells and are thought to play a role in the onset of multidrug resistance (MDR). To evaluate the contribution of GST to this process, inhibitors are needed. Glutathione (GSH) conjugates, although good GST inhibitors, cannot be used in vivo, because they are eliminated rapidly. In this paper, we describe the synthesis of a series of novel peptidomimetic glutathione analogues that are stabilized against peptidase mediated breakdown. The peptide bonds in GSH were replaced by isosteres, such as the 'reduced' amide (which was prepared using a novel method), N-methylamide, urethane, and methylene linkages. The in vitro evaluation of the compounds focuses on GST inhibition and stability towards gamma-glutamyl-transpeptidase (gammaGT), the main enzyme involved in GSH breakdown. The compounds were conjugated to the model electrophile ethacrynic acid (EA) to resemble GS-EA, an efficient GST inhibitor. All novel GSH-analogues were shown to inhibit rat liver cytosolic GSTs. Furthermore, peptidomimetic changes of the gamma-glutamyl-cysteine amide bond greatly improved stability towards gammaGT. These compounds may therefore be useful in the design of novel in vivo applicable GST inhibitors.  相似文献   
6.
We have recorded NOESY spectra of two non-selfcomplementary undecanucleotide duplexes. From the observed NOEs we do not detect any significant distortion of the helix when a G-C pair is replaced by a G-T pair and the normal interresidue connectivities can be followed through the mismatch site. We conclude that the 2D spectra of the non-exchangeable protons do not allow differentiation between a wobble or rare tautomer form for the mismatch. NOE measurements in H2O, however, clearly show that the mismatch adopts a wobble structure and give information on the hydration in the minor groove for the G-T base pair which is embedded between two A-T base pairs in the sequence.  相似文献   
7.
Brain serotonin homeostasis is crucially maintained by the serotonin transporter (5-HTT), and its down-regulation has been linked to increased vulnerability for anxiety- and depression-related behavior. Studies in 5-HTT knockout (5-HTT-/-) rodents have associated inherited reduced functional expression of 5-HTT with increased sensitivity to adverse as well as rewarding environmental stimuli, and in particular cocaine hyperresponsivity. 5-HTT down-regulation may affect normal neuronal wiring of implicated corticolimbic cerebral structures. To further our understanding of its contribution to potential alterations in basal functional and structural properties of neural network configurations, we applied resting-state functional MRI (fMRI), pharmacological MRI of cocaine-induced activation, and diffusion tensor imaging (DTI) in 5-HTT-/- rats and wild-type controls (5-HTT+/+). We found that baseline functional connectivity values and cocaine-induced neural activity within the corticolimbic network was not significantly altered in 5-HTT-/- versus 5-HTT+/+ rats. Similarly, DTI revealed mostly intact white matter structural integrity, except for a reduced fractional anisotropy in the genu of the corpus callosum of 5-HTT-/- rats. At the macroscopic level, analyses of complex graphs constructed from either functional connectivity values or structural DTI-based tractography results revealed that key properties of brain network organization were essentially similar between 5-HTT+/+ and 5-HTT-/- rats. The individual tests for differences between 5-HTT+/+ and 5-HTT-/- rats were capable of detecting significant effects ranging from 5.8% (fractional anisotropy) to 26.1% (pharmacological MRI) and 29.3% (functional connectivity). Tentatively, lower fractional anisotropy in the genu of the corpus callosum could indicate a reduced capacity for information integration across hemispheres in 5-HTT-/- rats. Overall, the comparison of 5-HTT-/- and wild-type rats suggests mostly limited effects of 5-HTT genotype on MRI-based measures of brain morphology and function.  相似文献   
8.
Small proteins called viral protein genome‐linked (VPg), attached to the 5′‐end of the viral RNA genome are found as common structure in the large family of picornaviruses. The replication of these viruses is primed by this VPg protein linked to a single uridylyl residue. We report a general procedure to obtain such nucleoproteins employing a pre‐uridylylated tyrosine building block in an on‐line solid phase‐based approach. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
9.
Collective migration of mechanically coupled cell layers is a notable feature of wound healing, embryonic development, and cancer progression. In confluent epithelial sheets, the dynamics have been found to be highly heterogeneous, exhibiting spontaneous formation of swirls, long-range correlations, and glass-like dynamic arrest as a function of cell density. In contrast, the flow-like properties of one-sided cell-sheet expansion in confining geometries are not well understood. Here, we studied the short- and long-term flow of Madin-Darby canine kidney (MDCK) cells as they moved through microchannels. Using single-cell tracking and particle image velocimetry (PIV), we found that a defined averaged stationary cell current emerged that exhibited a velocity gradient in the direction of migration and a plug-flow-like profile across the advancing sheet. The observed flow velocity can be decomposed into a constant term of directed cell migration and a diffusion-like contribution that increases with density gradient. The diffusive component is consistent with the cell-density profile and front propagation speed predicted by the Fisher-Kolmogorov equation. To connect diffusion-mediated transport to underlying cellular motility, we studied single-cell trajectories and occurrence of vorticity. We discovered that the directed large-scale cell flow altered fluctuations in cellular motion at short length scales: vorticity maps showed a reduced frequency of swirl formation in channel flow compared with resting sheets of equal cell density. Furthermore, under flow, single-cell trajectories showed persistent long-range, random-walk behavior superimposed on drift, whereas cells in resting tissue did not show significant displacements with respect to neighboring cells. Our work thus suggests that active cell migration manifests itself in an underlying, spatially uniform drift as well as in randomized bursts of short-range correlated motion that lead to a diffusion-mediated transport.  相似文献   
10.
A multilayer network approach combines different network layers,which are connected by interlayer edges,to create a single mathematical object.These networks can contain a variety of information types and represent different aspects of a system.However,the process for selecting which information to include is not always straightforward.Using data on 2 agonistic behaviors in a captive population of monk parakeets(Myiopsitta monachus),we developed a framework for investigating how pooling or splitting behaviors at the scale of dyadic relationships(between 2 individuals)affects individual-and group-level social properties.We designed 2 reference models to test whether randomizing the number of interactions across behavior types results in similar structural patterns as the observed data.Although the behaviors were correlated,the first reference model suggests that the 2 behaviors convey different information about some social properties and should therefore not be pooled.However,once we controlled for data sparsity,we found that the observed measures corresponded with those from the second reference model.Hence,our initial result may have been due to the unequal frequencies of each behavior.Overall,our findings support pooling the 2 behaviors.Awareness of how selected measurements can be affected by data properties is warranted,but nonetheless our framework disentangles these efforts and as a result can be used for myriad types of behaviors and questions.This framework will help researchers make informed and data-driven decisions about which behaviors to pool or separate,prior to using the data in subsequent multilayer network analyses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号