首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   186篇
  免费   6篇
  2021年   2篇
  2019年   2篇
  2018年   5篇
  2017年   3篇
  2016年   6篇
  2015年   9篇
  2014年   4篇
  2013年   16篇
  2012年   11篇
  2011年   18篇
  2010年   5篇
  2009年   9篇
  2008年   12篇
  2007年   15篇
  2006年   12篇
  2005年   15篇
  2004年   13篇
  2003年   14篇
  2002年   12篇
  2001年   3篇
  2000年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1984年   1篇
排序方式: 共有192条查询结果,搜索用时 218 毫秒
1.
We have identified a new mutation of Norrie disease (ND) gene in two Japanese males from unrelated families; they showed typical ocular features of ND but no mental retardation or hearing impairment. A mutation was found in both patients at the initation codon of exon 2 of the ND gene (ATG to GTG), with otherwise normal nucleotide sequences. Their mothers had the normal and mutant types of the gene, which was expected for heterozygotes of the disease. The mutation of the initiation codon would cause the failure of ND gene expression or a defect in translation thereby truncating the amino terminus of ND protein. In view of the rarity and marked heterogeneity of mutations in the ND gene, the present apparently unrelated Japanese families who have lived in the same area for over two centuries presumably share the origin of the mutation.  相似文献   
2.
3.
4.
5.
Chronic inflammatory diseases, such as rheumatoid arthritis and periodontitis-caused bone destruction, results from an increase of bone-resorbing osteoclasts (OCs) induced by inflammation. However, the detailed mechanisms underlying this disorder remain unclear. We herein investigated that the effect of urokinase-type plasminogen activator (uPA) on inflammatory osteoclastogenesis induced by lipopolysaccharide (LPS), which is a potent stimulator of bone resorption in inflammatory diseases. We found that the uPA deficiency promoted inflammatory osteoclastogenesis and bone loss induced by LPS. We also showed that LPS induced the expression of uPA, and the uPA treatment attenuated the LPS-induced inflammatory osteoclastogenesis of RAW264.7 mouse monocyte/macrophage lineage cells. Additionally, we showed that the uPA-attenuated inflammatory osteoclastgenesis is associated with the activation of plasmin/protease-activated receptor (PAR)-1 axis by uPA. Moreover, we examined the mechanism underlying the effect of uPA on inflammatory osteoclastogenesis, and found that uPA/plasmin/PAR-1 activated the adenosine monophosphate-activated protein kinase (AMPK) pathway through Ca2+/calmodulin dependent protein kinase kinase (CaMKK) activation, and attenuated inflammatory osteoclastogenesis by inactivation of NF-κB in RAW264.7 cells. These data suggest that uPA attenuated inflammatory osteoclastogenesis through the plasmin/PAR-1/Ca2+/CaMKK/AMPK axis. Our findings may provide a novel therapeutic approach to bone loss caused by inflammatory diseases.  相似文献   
6.
Using pituitary adenylate cyclase-activating polypeptide (PACAP)-deficient mice, we investigated whether PACAP is involved in the intoxicating effects of ethanol. The structure of PACAP is highly conserved during evolution, and in Drosophila, loss-of-function mutations in a PACAP-like neuropeptide gene, amnesiac, result in impairment of memory retention and increased sensitivity to ethanol. In mice, PACAP deficiency is associated with impaired memory performance and hippocampal long-term potentiation (LTP), however, sensitivity to ethanol has not been well investigated. Here, we addressed this issue in our recently developed PACAP-deficient mice. Sleep time (duration of the loss of righting reflex) was markedly shortened in PACAP-deficient mice compared with wild-type, although latency to the loss of righting reflex was not different between the two groups. Ethanol-induced hypothermia in wild-type control mice was significantly reduced in PACAP-deficient mice. Blood ethanol levels were not different between the two groups, excluding the possibility of increased ethanol metabolism. Thus, in contrast to that in Drosophila, PACAP deficiency in mammals caused a reduced sensitivity to ethanol. However, in both cases, PACAP or amnesiac products are likely to play significant roles in modifying the intoxicating effects of ethanol.  相似文献   
7.
In the present study, we showed that SPA-1, a Rap1 GTPase-activating protein (GAP), was bound to a cytoskeleton-anchoring protein AF-6. SPA-1 and AF-6 were co-immunoprecipitated in the 293T cells transfected with both cDNAs as well as in normal thymocytes. In vitro binding studies using truncated fragments and their mutants suggested that SPA-1 was bound to the PDZ domain of AF-6 via probable internal PDZ ligand motif within the GAP-related domain. The motif was conserved among Rap1 GAPs, and it was shown that rapGAP I was bound to AF-6 comparably with SPA-1. RapV12 was also bound to AF-6 via the N-terminal domain, and SPA-1 and RapV12 were co-immunoprecipitated only in the presence of AF-6, indicating that they could be brought into close proximity via AF-6 in cells. Immunostaining analysis revealed that SPA-1 and RapV12 were co-localized with AF-6 at the cell attachment sites. In HeLa cells expressing SPA-1 in a tetracycline-regulatory manner, expression of AF-6 inhibited endogenous Rap1GTP and beta(1) integrin-mediated cell adhesion to fibronectin in SPA-1-induced conditions, whereas it affected neither of them in SPA-1-repressed conditions. These results suggested that AF-6 could control integrin-mediated cell adhesion by regulating Rap1 activation through the recruitment of both SPA-1 and Rap1GTP via distinct domains.  相似文献   
8.
In cultured astrocytes, PACAP activates extracellular signal-regulated kinase (ERK) and induces cell proliferation at picomolar concentrations. Here, we examined the role of cyclic AMP signaling underlying the effects of PACAP. PACAP38 induced accumulation of cyclic AMP in astrocytes at concentrations as low as 10(-12)M. PACAP38 (10(-12)-10(-9)M)-stimulated cell proliferation was completely abolished by the cyclic AMP antagonist Rp-cAMP, whereas the protein kinase A (PKA) inhibitor H89 had no effect. This PACAP38-mediated effect was also abolished by the ERK kinase inhibitor PD98059, suggesting the involvement of ERK in PACAP-induced proliferation. PACAP38 (10(-12)M)-stimulated phosphorylation of ERK lasted for at least 60 min. This effect was completely abolished by Rp-cAMP but not by H89. Dibutyryl cyclic AMP maximally stimulated the incorporation of thymidine and activation of ERK at 10(-10)M. These results suggest that PACAP-mediated stimulation of ERK activity and proliferation of astrocytes may involve a cyclic AMP-dependent, but PKA-independent, pathway.  相似文献   
9.
Despite the heteroplasmic lower population of mitochondrial (mt) DNA deletion, mtDNA deletion is significantly related to the loss of atrial adenine nucleotides. To elucidate its mechanism, we examined the frequency of a 7.4-kb mtDNA deletion, the concentration of adenine nucleotides, and the activity of AMP catabolic enzymes in 10 human right atria obtained from cardiac surgery, using quantitative PCR, HPLC, and immunoprecipitations. The atrial concentrations of ATP, ADP, AMP, and the total adenine nucleotides were significantly lower in patients with deletion than those in patients without deletion, despite the lower frequency of their deletion. The activities of total AMP deaminase (AMPD), liver-type (AMPD 2), and heart-type isoform (AMPD 3) were significantly higher in patients with deletion than in patients without deletion, although there was no significant difference in the cytosolic 5(')-nucleotidase among them. In conclusion, mtDNA deletion coordinately induces AMP deaminase to contribute to the loss of atrial adenine nucleotides through degrading AMP excessively.  相似文献   
10.
The effect of brown adipose tissue (BAT) sympathetic hemidenervation on the activity of glycerokinase (GyK) was investigated in different physiological conditions. In rats fed a balanced diet, the activity of the enzyme was approximately 50% lower in BAT-denervated pads than in intact, innervated pads. In rats adapted to a high-protein, carbohydrate-free diet, norepinephrine turnover rates and BAT GyK activity were already reduced, and BAT denervation resulted in a further decrease in the activity of the enzyme. Cold acclimation of normally fed rats at 4 degrees C for 10 days markedly increased the activity of the enzyme. Cold exposure (4 degrees C) for 6 h was insufficient to stimulate BAT GyK, but the activity of the enzyme was already increased after 12 h of cold exposure. The cold-induced BAT GyK stimulation was completely blocked in BAT-denervated pads. The data indicate that an adequate sympathetic flow to BAT is required for the maintenance of normal levels of GyK activity and for the enzyme response to situations, such as cold exposure, which markedly increase BAT sympathetic flow.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号