首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   195篇
  免费   21篇
  2024年   1篇
  2021年   1篇
  2020年   2篇
  2019年   5篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   6篇
  2014年   11篇
  2013年   14篇
  2012年   8篇
  2011年   13篇
  2010年   15篇
  2009年   7篇
  2008年   2篇
  2007年   10篇
  2006年   6篇
  2005年   7篇
  2004年   11篇
  2003年   6篇
  2002年   6篇
  2001年   6篇
  2000年   9篇
  1999年   6篇
  1998年   5篇
  1997年   4篇
  1996年   2篇
  1993年   1篇
  1992年   4篇
  1991年   9篇
  1990年   1篇
  1989年   5篇
  1988年   4篇
  1987年   5篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
  1964年   1篇
排序方式: 共有216条查询结果,搜索用时 281 毫秒
1.
Despite similarities of cellular membranes in all eukaryotes, every compartment displays characteristic and often unique features which are important for the functions of the specific organelles. In the present study, we biochemically characterized the plasma membrane of the methylotrophic yeast Pichia pastoris with emphasis on the lipids which form the matrix of this compartment. Prerequisite for this effort was the design of a standardized and reliable isolation protocol of the plasma membrane at high purity. Analysis of isolated plasma membrane samples from P. pastoris revealed an increase of phosphatidylserine and a decrease of phosphatidylcholine compared to bulk membranes. The amount of saturated fatty acids in the plasma membrane was higher than in total cell extracts. Ergosterol, the final product of the yeast sterol biosynthetic pathway, was found to be enriched in plasma membrane fractions, although markedly lower than in Saccharomyces cerevisiae. A further characteristic feature of the plasma membrane from P. pastoris was the enrichment of inositol phosphorylceramides over neutral sphingolipids, which accumulated in internal membranes. The detailed analysis of the P. pastoris plasma membrane is discussed in the light of cell biological features of this microorganism especially as a microbial cell factory for heterologous protein production.  相似文献   
2.
3.
Submitochondrial membrane fractions from yeast that are enriched in inner and outer membrane contact sites were analyzed with respect to their lipid composition. Characteristic features were the significantly reduced content of phosphatidylinositol, the decreased amount of phosphatidylcholine, and the enrichment in phosphatidylethanolamine and cardiolipin. Coisolation of phosphatidylserine synthase with the outer membrane portion and enrichment of phosphatidylserine decarboxylase in the inner membrane portion of isolated contact sites provided the basis for a metabolic assay to study phosphatidylserine transfer from the outer to the inner mitochondrial membrane via contact sites. The efficient conversion to [3H]phosphatidylethanolamine of [3H]phosphatidylserine synthesized from [3H]serine in situ supports the notion that mitochondrial membrane contact sites are zones of intramitochondrial translocation of phosphatidylserine.  相似文献   
4.
Th physically interact with B cells and produce lymphokines that influence B cell growth and differentiation. The respective contribution of cell contact and lymphokines to induction of B cell growth and differentiation was addressed using purified plasma membranes (PM) from resting Th (PMrest) and anti-CD3-activated Th (PMCD3) together with lymphokines. Results show that PMCD3, but not PMrest, induce 10% of resting B cells to enter the G1 phase of the cell cycle, with few B cells entering G1b and S/G2. The inclusion of IL-4, but not IL-2, IL-5, or IFN-gamma, amplifies the B cell response to PMCD3 by increasing the total percentage of activatable B cells to greater than 40% and inducing B cell progression into G1b, S, and G2. Direct comparison between PMrest and PMCD3 purified from Th1 and Th2 indicate that both Th1 and Th2 induce similar levels of B cell proliferation in the presence of IL-4. Further, the lymphokine requirements for B cell proliferation induced by PMCD3 from Th1 and Th2 is indistinguishable. B cell differentiation to IgM, IgG1, and IgG2a synthesis by PMCD3 required IL-4 and IL-5. Using lymphokine conditions that supported B cell differentiation, PMCD3 purified from Th1 and Th2 induced similar levels of IgM, and IgG1. Given the functional data on PMCD3 from Th1 and Th2, the data indicate that there are no substantive differences between Th1- and Th2-derived PMCD3, and that the major differences in the ability of viable Th1 and Th2 to activate B cells is the lymphokines produced by the cells.  相似文献   
5.
A 48-kDa human T-cell protein-tyrosine-phosphatase (TC.PTPase) and a truncated form missing an 11-kDa C-terminal segment (TC delta C11.PTPase) were expressed by using the baculovirus system and characterized after extensive purification. The full-length PTPase was restricted to the particulate fraction of the cells from which it could be released by a combination of salt and detergent. The enzyme was entirely specific for phosphotyrosine residues. It displayed a low level of activity toward phosphorylated, reduced, carboxamidomethylated, and maleylated lysozyme (RCML), but was 12 times more active toward phosphorylated myelin basic protein (MBP). By contrast, the 37-kDa form localized in the soluble fraction, and its activity toward RCML was 5 times higher than that observed with MBP. The autophosphorylated cytoplasmic domain of the EGF receptor served as substrate for both enzymes. Limited proteolysis of either protein gave rise to a 33-kDa fragment displaying the substrate specificity of the truncated form. These data lend further support to the view that the C-terminal segment of the T-cell PTPase serves a regulatory function, playing an important role in the localization and substrate specificity of the enzyme.  相似文献   
6.
A phospholipid transfer protein with a broad substrate specificity was isolated from yeast cytosol. The rate of transfer catalyzed by this protein in vitro is highest for phosphatidylserine; phosphatidylethanolamine, cardiolipin, phosphatidic acid and ergosterol are transported at a lower rate. In contrast to the yeast phosphatidylinositol transfer protein (Daum, G. and Paltauf, F. (1984) Biochim. Biophys. Acta 794, 385-391) the phosphatidylserine transfer protein does not catalyze the translocation of phosphatidylinositol or phosphatidylcholine. Using chromatographic methods the phosphatidylserine transfer protein was enriched approximately 3000-fold over yeast cytosol. The protein is inactivated by heat, detergents and proteinases. Divalent cations strongly inhibit the transfer of phosphatidylserine in vitro, and EDTA at low concentrations has a stimulatory effect.  相似文献   
7.
Import of in vitro-synthesized cytochrome b2 (a soluble intermembrane space enzyme) was studied wih isolated yeast mitochondria. Import requires an electrochemical gradient across the inner membrane and is accompanied by cleavage of the precursor to the corresponding mature form. This conversion proceeds via an intermediate form of cytochrome b2, which can be detected as a transient species when mitochondria are incubated with the cytochrome b2 precursor for short times or at low temperatures. Conversion of the precursor to the intermediate form is energy-dependent and catalyzed by an o-phenanthroline-sensitive protease located in the soluble matrix. The intermediate is subsequently converted to mature cytochrome b2 in a reaction which is o-phenanthroline-insensitive and requires neither an energized inner membrane nor a soluble component of the intermembrane space. Whereas mature cytochrome b2 is soluble, the intermediate formed by isolated mitochondria is membrane-bound and exposed to the intermembrane space. The same intermediate is detected as a transient species during cytochrome b2 maturation in intact yeast cells (Reid, G. A., Yonetani, T., and Schatz, G (1982) J. Biol. Chem. 257, 13068-13074). The in vitro studies reported here suggest that a part of the cytochrome b2 precursor polypeptide chain is transported to the matrix where it is cleaved to a membrane-bound intermediate form by the same protease that processes polypeptides destined for the matrix space or for the inner membrane. In a second reaction, the cytochrome b2 intermediate is converted to mature cytochrome b2 which is released into the intermembrane space. The binding of heme is not necessary for converting the intermediate to the mature polypeptide.  相似文献   
8.
Physcomitrella patens is a bryophyte model plant that is often used to study plant evolution and development. Its resources are of great importance for comparative genomics and evo‐devo approaches. However, expression data from Physcomitrella patens were so far generated using different gene annotation versions and three different platforms: CombiMatrix and NimbleGen expression microarrays and RNA sequencing. The currently available P. patens expression data are distributed across three tools with different visualization methods to access the data. Here, we introduce an interactive expression atlas, Physcomitrella Expression Atlas Tool (PEATmoss), that unifies publicly available expression data for P. patens and provides multiple visualization methods to query the data in a single web‐based tool. Moreover, PEATmoss includes 35 expression experiments not previously available in any other expression atlas. To facilitate gene expression queries across different gene annotation versions, and to access P. patens annotations and related resources, a lookup database and web tool linked to PEATmoss was implemented. PEATmoss can be accessed at https://peatmoss.online.uni-marburg.de  相似文献   
9.
Lipid droplets (LD) are the main depot of non-polar lipids in all eukaryotic cells. In the present study we describe isolation and characterization of LD from the industrial yeast Pichia pastoris. We designed and adapted an isolation procedure which allowed us to obtain this subcellular fraction at high purity as judged by quality control using appropriate marker proteins. Components of P. pastoris LD were characterized by conventional biochemical methods of lipid and protein analysis, but also by a lipidome and proteome approach. Our results show several distinct features of LD from P. pastoris especially in comparison to Saccharomyces cerevisiae. P. pastoris LD are characterized by their high preponderance of triacylglycerols over steryl esters in the core of the organelle, the high degree of fatty acid (poly)unsaturation and the high amount of ergosterol precursors. The high phosphatidylinositol to phosphatidylserine of ~ 7.5 ratio on the surface membrane of LD is noteworthy. Proteome analysis revealed equipment of the organelle with a small but typical set of proteins which includes enzymes of sterol biosynthesis, fatty acid activation, phosphatidic acid synthesis and non-polar lipid hydrolysis. These results are the basis for a better understanding of P. pastoris lipid metabolism and lipid storage and may be helpful for manipulating cell biological and/or biotechnological processes in this yeast.  相似文献   
10.
Mitochondria are partially autonomous organelles that depend on the import of certain proteins and lipids to maintain cell survival and membrane formation. Although phosphatidylglycerol, cardiolipin, and phosphatidylethanolamine are synthesized by mitochondrial enzymes, phosphatidylcholine, phosphatidylinositol, phosphatidylserine, and sterols need to be imported from other organelles. The origin of most lipids imported into mitochondria is the endoplasmic reticulum, which requires interaction of these two subcellular compartments. Recently, protein complexes that are involved in membrane contact between endoplasmic reticulum and mitochondria were identified, but their role in lipid transport is still unclear. In the present review, we describe components involved in lipid translocation between the endoplasmic reticulum and mitochondria and discuss functional as well as regulatory aspects that are important for lipid homeostasis.Biological membranes are major structural components of all cell types. They protect the cell from external influences, organize the interior in distinct compartments and allow balanced flux of components. Besides their specific proteome, organelles exhibit unique lipid compositions, which influence their shape, physical properties, and function. Major lipid classes found in biological membranes are phospholipids, sterols, and sphingolipids.The major “lipid factory” within the cell is the endoplasmic reticulum (ER). It is able to synthesize the bulk of structural phospholipids, sterols, and storage lipids such as triacylglycerols and steryl esters (van Meer et al. 2008). Furthermore, initial steps of ceramide synthesis occur in the ER providing precursors for the formation of complex sphingolipids in other organelles (Futerman 2006). Besides the export of ceramides, the ER supplies a large portion of lipids to other organelles, which cannot produce their own lipids or have a limited capacity to do so. Organelle interaction and transport of lipids require specific carrier proteins, membrane contact sites, tethering complexes, and/or vesicle flux. These processes are highly important for the maintenance of cell structure and survival but are still a matter of dispute. Most prominent organelle interaction partners are the ER and mitochondria. A subfraction of the ER named mitochondria-associated membrane (MAM) (Vance 1990) was described to be involved in lipid translocation to mitochondria. MAM is part of the ER network, which was shown to be in contact or close proximity to the outer mitochondrial membrane (OMM). Contact sites between MAM and mitochondria were assumed to facilitate exchange of components between the two compartments. Interestingly, MAM harbor a number of lipid synthesizing enzymes (Gaigg et al. 1994). Recently, molecular components governing membrane contact between the two organelles were identified (Dolman et al. 2005; Csordás et al. 2006; de Brito and Scorrano 2008; Kornmann et al. 2009; Friedman et al. 2010; Lavieu et al. 2010), although the specific role of these components in lipid translocation is not yet clear.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号