首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
In order to determine the involvement of T-B cell contact vs lymphokine production in mediating B cell cycle entry and progression, Th cell clones "defective" in lymphokine production were cloned. Th-3.1 is one such clone that required IL-2 to produce significant levels of IL-4 and IFN-gamma. Unlike conventional Th clones, Th-3.1 induced B cell proliferation only in the presence of Ag and IL-2. In contrast to the absolute requirement of IL-2 for Th-3.1-induced B cell proliferation, IL-2 was not required for the formation of stable Th-3.1-B cell conjugates or Th-3.1-induced B cell entry into the G1 phase of the cell cycle. In the absence of IL-2 and under conditions that promoted Th-B cell interactions, Th-3.1 induced 10 to 20% of resting B cells to enter G1. B cell entry into the cell cycle was not inhibited by anti-lymphokine mAb or promoted by exogenous lymphokines, suggesting that endogenous lymphokine activity was not required for Th-3.1-induced G0 to G1 transition. The data suggested that the IL-2-independent induction of B cells into G1 by Th-3.1 was a cell contact-dependent event. Direct proof that Th-3.1-B cell contact was necessary for B cell cycle entry was provided by comparative in situ analysis of the RNA synthetic activity and the RNA content of B cells that were in physical contact with Th-3.1 or not in contact with Th-3.1. In situ autoradiography of RNA synthesis illustrated that a high frequency of B cells in contact with Th-3.1 expressed heightened RNA synthetic activity, whereas "bystander" B cells were less frequently induced into cycle. In situ laser cytometry of B cell size and total RNA content showed that B cells in physical contact with Th-3.1 had a higher RNA content and were larger than "bystander" B cells present in the same microcultures. This model system has allowed the dissection of T cell help into IL-2-dependent and IL-2-independent phases. Early cell contact-dependent events and B cell cycle progression into G1 were IL-2 independent, whereas the production of lymphokines (IL-4, IFN-gamma) by Th-3.1 and Th-3.1-induced B cell proliferation was IL-2 dependent.  相似文献   

2.
We used an adoptive transfer system and CD4+ T cell clones with defined lymphokine profiles to examine the role of CD4+ T cells and the types of lymphokines involved in the development of B cell memory and affinity maturation. Keyhole limpet hemocyanin (KLH)-specific CD4+ Th2 clones (which produce IL-4 and IL-5 but not IL-2 or IFN-gamma) were capable of inducing B cell memory and affinity maturation, after transfer into nude mice or after transfer with unprimed B cells into irradiated recipients and immunization with TNP-KLH. In addition, KLH-specific Th1 clones, which produce IL-2 and IFN-gamma but not IL-4 or IL-5, were also effective in inducing B cell memory and high affinity anti-TNP-specific antibody. The induction of affinity maturation by Th1 clones occurred in the absence of IL-4, as anti-IL-4 mAb had no effect on the affinity of the response whereas anti-IFN-gamma mAb completely blocked the response. Th1 clones induced predominantly IgG2a and IgG3 antibody, although Th2 clones induced predominantly IgG1 and IgE antibody. We thus demonstrated that some Th1 as well as some Th2 clones can function in vivo to induce Ig synthesis. These results also suggest that a single type of T cell with a restricted lymphokine profile can induce both the terminal differentiation of B cells into antibody secreting cells as well as induce B cell memory and affinity maturation. Moreover, these results suggest that B cell memory and affinity maturation can occur either in the presence of Th2 clones secreting IL-4 but not IFN-gamma, or alternatively in the presence of Th1 clones secreting IFN-gamma but not IL-4.  相似文献   

3.
Helper activity of several murine CD4+ T cell subsets was examined. Effector Th, derived from naive cells after 4 days of in vitro stimulation with alloantigen, when generated in the presence of IL-4, secreted high levels of IL-4, IL-5, and IL-6, and low levels of IL-2 and IFN-gamma, and induced the secretion of all Ig isotypes particularly IgM, IgG1, IgA, and IgE from resting allogeneic B cells. Effectors generated with IL-6 secreted IL-2, IL-4, IL-5, IL-6, and IFN-gamma, and induced similar levels of total Ig, 25 to 35 micrograms/ml, but with IgM, IgG3, IgG1, and IgG2a isotypes predominating. Helper activity of these Th was significantly greater than that of effectors generated with IL-2 (10-15 micrograms/ml Ig) and of 24-h-activated naive and memory cells (2-4 micrograms/ml), both of which induced mainly IgM. Unlike other isotypes, IgE was induced only by effector Th generated with IL-4. Blocking studies showed that secretion of all isotypes in response to IL-6-primed effectors was dependent on IL-2, IL-5, and IL-6. IL-4 was required for optimal IgM, IgG1, and IgA secretion, but limited secretion of IgG2a, whereas IFN-gamma was required for optimal IgG2a secretion, and limited IgM, IgG1, and IgA. In contrast, secretion of all isotypes in response to IL-4-primed effectors was dependent on IL-5, although IL-4 and IFN-gamma were also essential for IgE and IgG2a, respectively. Addition of exogenous IL-5 to B cell cultures driven by IL-6-primed effectors did not obviate the requirement for IL-2, IL-4, and IL-6, suggesting that interaction of IL-4-primed effectors with B cells was qualitatively different from that of IL-6-primed effectors, driving B cells to a stage requiring only IL-5 for differentiation. Addition of exogenous factors to IL-2-primed effector Th, particularly IL-4 in the presence of anti-IFN-gamma, resulted in levels of Ig, including IgE, comparable to those induced with other effectors. These results show that functionally distinct Th cell subsets can be generated rapidly in vitro, under the influence of distinct cytokines, which vary dramatically in their levels of help for resting B cells. The cytokines involved in responses to distinct Th cells differ depending on the quality of interaction with the B cell, and the extent of help is strongly determined by the quantity and nature of cytokines secreted by the T cells.  相似文献   

4.
After activation with anti-CD3, activated Th (THCD3), but not resting Th, fixed with paraformaldehyde induce B cell RNA synthesis when co-cultured with resting B cells. This activity is expressed by Th of both Th1 and Th2 subtypes, as well as a third Th clone that is not classified into either subtype. It is proposed that anti-CD3 activation of Th results in the expression of Th membrane proteins that trigger B cell cycle entry. Kinetic studies reveal that 4 to 8 h of activation with anti-CD3 is sufficient for ThCD3 to express B cell-activating function. However, activation of Th with anti-CD3 for extended periods of time results in reduced Th effector activity. Inhibition of Th RNA synthesis during the anti-CD3 activation period ablates the ability of ThCD3 to induce B cell cycle entry. This indicates that de novo synthesis of proteins is required for ThCD3 to express effector function. The ability of fixed ThCD3 to induce entry of B cell into cycle is not due to an increase in expression of CD3, CD4, LFA-1, ICAM-1, class I MHC or Thy-1. Other forms of Th activation (PMA and A23187, Con A) also induced Th effector function. Furthermore, purified plasma membranes from anti-CD3 activated, but not resting Th, induced resting B cells to enter cycle. The addition of IL-4, but not IL-2, IL-5, or IFN-gamma amplified the DNA synthetic response of B cells stimulated with PM from activated Th. Taken together these data indicate that de novo expression of Th surface proteins on activated Th is required for Th to induce B cell cycle entry into G1 and the addition of IL-4 is required for the heightened progression into S phase.  相似文献   

5.
Plasma membranes from the mitogen-activated mouse Th2 cell clone D10.G4.1 have recently been shown to provide the cell contact-dependent signals necessary for the induction of small B cell proliferation. Together with the Th2-derived lymphokines IL-4 and IL-5, these membranes stimulate production of Ig isotypes identical to those produced when B cells were stimulated by intact Th2 cells. In contrast, Th1 clones are poor inducers of Ig production in vitro. This could be solely due to differences in the lymphokines released by Th1 and Th2 cells or to differences in the cell-cell contact signals delivered by activated Th1 and Th2 cells. We report that membranes from three different activated Th1 clones induced strong Ag-independent proliferation of small dense B cells. The level of B cell proliferation was enhanced approximately fourfold by the addition of lymphokine-containing supernatant from Con A-activated Th2 cells and was unaffected by any of the lymphokine-containing supernatants from Con A-activated Th1 clones. As with D10.G4.1 membranes, Th1 membranes alone induced B cell proliferation but not secretion of Ig. However, addition of supernatant from Con A-activated D10.G41 cells, but not any supernatants from Con A-activated Th1 cells, induced Ig secretion of all isotypes. These effects were shown to not simply result from increased B cell numbers after stimulation with Th2 lymphokines. Thus, Th1 cell clones seem to poorly induce antibody responses entirely because of their lymphokine repertoire and not because of differences or deficiencies in the ability of these cells to deliver cell contact-dependent signals to B cells.  相似文献   

6.
Activated CD4+ T cells can be classified into distinct subsets; the most divergent among them may be considered to be the IL-2 and IFN-gamma-producing Th1 clones and the IL-4 and IL-5-producing Th2 clones. Because Th1 and Th2 clones can usually be detected only after several months of culture, we used conditions that modulate the IL-2 and IL-4 production in short term culture. Here we show that freshly isolated and subsequently in vitro-activated CD4+ T cells that were cultured for 11 days with rIL-2 and restimulated showed a IFN-gamma+ IL-2+ IL-3+ IL-4- IL-5- pattern. Because these cells were not capable of providing B cell help for IgG1, IgG2a, or IgE in an APC- and TCR-dependent T-B cell assay, they expressed a phenotype typical for most Th1 clones. In contrast, activated T cells that were cultured for 11 days with IL-2 plus a mAb to CD3 and then restimulated produced a IFN-gamma- IL-2- IL-3+ IL-4+ IL-5+ pattern. These cells were capable of providing B cell help for IgG1, IgG2a, and IgE synthesis and thus presented a phenotype typical for Th2 clones. Similar results were observed when mitogenic mAb to Thy-1.2 or to framework determinants of the alpha beta TCR were used. The induction of Th1- and Th2-like cells did not depend on the relative expression of CD44 or CD45 by the T cells before activation in vitro. Because the incubation of activated T cells with anti-CD3/TCR mAb induced high unrestricted lymphokine production, the latter might be responsible for the Th2-like lymphokine pattern observed after restimulation. To address this point, TCR V beta 8+ and V beta 8- T cell blasts were co-cultured in the presence of mAb to V beta 8. After restimulation, V beta 8+ cells had a IL-4high IL-2low phenotype and V beta 8- cells had a IL-4low IL-2high phenotype. This demonstrates that TCR ligation but not lymphokines alone are capable of inducing Th2-like cells, and this points out a central role for the TCR in the generation of T cell subsets.  相似文献   

7.
CD4+ T cells have been recently divided into two subsets. The functions of these subsets are thought to be distinct: one subset (Th1) is responsible for delayed type hypersensitivity responses and another (Th2) is primarily responsible for induction of antibody synthesis. To more precisely define the roles of both subsets in humoral immune responses, we examined the ability of a panel of nominal antigen specific Th1 and Th2 clones to induce anti-TNP specific antibody synthesis in TNP-primed or unprimed B cells. Four of nine Th1 clones induced little or no antibody synthesis with TNP-primed B cells. However, five other Th1 clones were very effective at inducing IgG anti-TNP plaque-forming cell (PFC) responses in primed B cells. One of these Th1 clones was analysed in detail and found to also provide helper function for unprimed B cells. Cognate B-T cell interaction was required for induction of both primary and secondary responses with this clone, indicating that a Th1 clone could function as a "classical" Th cell. The seven IL-4 producing Th2 clones examined were also heterogeneous in their ability to induce antibody secretion by TNP-primed B cells. Although four of the Th2 clones induced IgG and IgM anti-TNP PFC responses, two Th2 clones induced only IgM and no IgG antibody, and another clone failed to induce any anti-TNP PFC. All Th2 clones failed to induce any anti-TNP PFC. All Th2 clones produced high levels of IL-4, but "helper" Th2 clones produced significantly greater amounts of IL-5 than "non-helper" Th2 clones. These studies indicate that some IL-2- and some IL-4-producing T cell clones can induce TNP-specific antibody in cell clones can induce TNP-specific antibody in primed and unprimed B cells, and that Th1 and Th2 clones are heterogeneous in their ability to induce Ig synthesis. Therefore, although T cell clones can be classified as Th1 or Th2 types according to patterns of IL-2, IFN-gamma, or IL-4 synthesis, the functional capacity to induce antibody synthesis cannot be predicted solely by their ability to secrete these lymphokines.  相似文献   

8.
Ag-specific and MHC-restricted Th clones of different Ag specificities and MHC haplotypes were tested for their ability to produce soluble factors capable of providing the signals required for B cell activation and IgG antibody production. Each of five Th clones tested generated significant helper activity in supernatants derived from coculture of the T cell clone with specific Ag and syngeneic APC. The same helper activity was detected in supernatants of clones stimulated with immobilized anti-CD3 antibody in the absence of Ag or APC. The secreted helper activity resembled the activity of the intact Th cells in that it was Ag-specific, carrier-hapten-linked and MHC-restricted. These T cell products functioned to activate only those B cells expressing MHC products which corresponded to the specificity of each Th clone. Thus, the specificity of the cell-free T cell product mimicked precisely that expressed by the intact Th cell and presumably mediated by the cell surface TcR. In addition to the apparent presence of specific helper factor in Th clone supernatants, a role for nonspecific lymphokines was also identified in these preparations. Although recombinant or purified IL-4 alone was not sufficient to stimulate hapten-primed B cells to secrete hapten-specific IgG antibodies, mAb specific for IL-4 blocked the induction of antibody secretion by Th cell supernatant. These results indicate that stimulation of B cells to produce hapten-specific IgG antibody requires at least two distinct signals: an Ag-specific T cell signal which is restricted by MHC products expressed on the B cells, and a nonspecific signal mediated at least in part by the lymphokine IL-4.  相似文献   

9.
An Ag-specific, IL-2-dependent Th clone induced the growth of B cells in a class II-restricted, Ag-specific, IL-2-dependent manner. The formation of stable Th-3.1-B cell conjugates was restricted by Ag and class II MHC. After activation of Th-3.1 by insolubilized anti-T3 (Th-3.1T3), Th-3.1T3 induced the growth of B cells in a class II unrestricted, Ag nonspecific manner. The formation of stable conjugates between Th-3.1T3 and B cells was also class II unrestricted and Ag nonspecific. Although the interaction of Th-3.1T3 and B cells was class II unrestricted, the interaction was inhibited by the combination of anti-IA and anti-IE mAb. This suggested that monomorphic domains of class II MHC molecules were involved in Th-3.1T3-B cell interaction. Fixed Th-3.1T3 but not fixed resting Th-3.1 induced B cell cycle entry, as measured by an increase in B cell RNA synthesis. Trypsin-treatment of Th-3.1T3 before fixation reduced their ability to activate B cells, indicating that cell surface proteins on Th-3.1T3 were required for enhanced B cell RNA synthesis. Anti-IL-4, anti-IL-2R, or anti-IFN-gamma did not affect the ability of Th-3.1T3 to induce heightened B cell RNA synthesis. Progression into S phase by B cells activated with fixed Th-3.1T3 was supported by the addition of soluble factors. When stimulated with fixed Th-3.1T3, EL4 supernatant (SN) enhanced B cell DNA synthesis. Depletion of IL-4, but not IL-2, from EL4 SN ablated its supportive capabilities. IL-4 alone was completely ineffective in supporting entry into S phase. Therefore, IL-4 and another activity(ies) in EL4 SN were necessary for B cell cycle progression into S phase. Taken together, these data suggest that after Th activation, Th cell surface proteins are expressed that mediate the binding of Th to B cells via recognition of nonpolymorphic domains of class II MHC molecules. Contact of Th-3.1T3 with B cells, not lymphokines, results in the entry of B cells into the cell cycle and heightened B cell lymphokine responsiveness. The addition of exogenous lymphokines supports the progression of Th-3.1T3-activated B cells into S phase.  相似文献   

10.
11.
T lymphocytes are thought to provide "help" for B cells by activating them from the resting state, by secretion of antigen-nonspecific lymphokines that promote B cell differentiation and maturation, and by providing signals that induce isotype switching. To clarify the extent to which these different forms of helper activity could be carried out by individual T cells, we set up cultures in which B cells activated, and were in turn themselves stimulated by, limiting numbers of T cells through differences at the H-2 or Mls loci. At T cell doses at which responses were likely to represent the activity of individual helper T cells (or their immediate clonal progeny), we found that some T cells were able both to produce interleukin 2 (IL-2) and to induce secretion of both IgM and IgG, whereas others induced immunoglobulin (Ig) secretion without detectable IL-2 production, and still others made IL-2 but did not promote antibody secretion. We could not detect B cell stimulatory factor 1 production by alloantigen-stimulated T cells, and the addition of antibodies to B cell stimulatory factor 1 did not prevent Ig production. Two results, however--higher Ig accumulation in those wells that received an IL-2-producing cell, and inhibition by anti-IL-2 receptor antibodies of B cell but not T cell function--are consistent with a direct stimulatory effect of IL-2 on B cells in this system. The pattern of helper functions exhibited by T cells freshly isolated from mice differs from that inferred from studies of cloned lines of T cells in long term cultures.  相似文献   

12.
We have shown that the requirements for the production of IL-4 and IL-5 by normal L3T4+T cells from murine spleen are very different from those for the production of IL-2. Secretion of detectable quantities of IL-4 and IL-5 and induction of the mRNA for each lymphokine occurs in vitro only after cells are primed and re-stimulated. This priming can be achieved by mitogens (Con A), by antibodies to the TCR (anti-T3) or by stimulation with alloantigen. In contrast, requirements for induction of lymphokine production after priming resemble those for initial production of IL-2. Thus the majority of T cells of helper phenotype that have the potential to become IL-4- and IL-5-secreting T cells, exist in the form of precursors requiring stimulation and several days of culture as well as re-stimulation with mitogen or Ag before they become detectable as lymphokine-secreting cells. In contrast, among fresh CD4+T cells, secretion of IL-2, IL-3, granulocyte/macrophage CSF, and IFN-gamma is easily detected within 24 h of stimulation with mitogen or Ag. These observations establish that distinct phenotypes of Th cells are found at different times after stimulation and support the concept that synthesis and secretion of different lymphokines or groups of lymphokines are regulated independently. Furthermore the patterns of lymphokines secreted by fresh vs primed Th cells, which largely correspond to the patterns that have been used to define the Th1 and Th2 subsets among Th cell lines, provides evidence that different subsets of normal T cells exist that may correspond to these designations. Secretion of different lymphokines by two subsets of Th cells at different times in an immune response, and perhaps in different places, suggests a model in which the ratio of the two T cell subsets (Th1 vs Th2) and state of differentiation of each (precursor vs effector), influence or determine the direction of the response, with variations in these parameters leading to differing responses.  相似文献   

13.
The helper activity of resting T cells and in vitro generated effector T cells and the relative roles of cognate interaction, diffusible cytokines, and non-cognate T-B contact in B cell antibody responses were evaluated in a model in which normal murine CD4+ T cells (Th), activated with alloantigen-bearing APC, were used to support the growth and differentiation of unstimulated allogeneic B cells. Both "fresh" T cells, consisting of memory and naive cells, stimulated for 24 h, and "effector" T cells, derived from naive cells after 4 days of in vitro stimulation, induced the secretion of IgM, IgG3, IgG1, IgG2a, and IgA. Effector T cells were significantly better helpers of the response of small dense B cells, inducing Ig at lower numbers and inducing at optimal numbers 2- to 3-fold more Ig production than fresh T cells. The predominant isotype secreted was IgM. Supernatants derived from fresh T cell cultures contained moderate levels of IL-2, whereas those from effector cultures contained significant levels of IL-6 and IFN-gamma in addition to IL-2. The involvement of soluble factors in the B cell response was demonstrated by the ability of antibodies to the cytokines IL-2, IL-4, and IL-6 to each block Ig secretion. Antibodies to IL-5 and IFN-gamma had no effect on the T cell-induced response. Kinetic studies suggested that IL-4 acted during the initial stages of the response, whereas the inability of anti-IL-6 to block B cell proliferation suggested that IL-6 was involved in part in promoting differentiation of the B cells. The relative contributions of cognate (MHC-restricted) and bystander (MHC-unrestricted) T-B cell contact vs cytokine (non-contact)-mediated responses were assessed in a transwell culture system. The majority of the IgM, IgG3, IgG1, and IgG2a response induced by both fresh and effector T cells was dependent on cognate interaction with small, high density B cells. In contrast, a small proportion of these isotypes and most of the IgA secreted resulted from the action of IL-6 on large, presumably preactivated, B cells. The IgA response did not require cell contact or vary when fresh and effector cells were the helpers. The contribution of bystander contact in the overall antibody response to both T cell populations was minimal.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
In order to compare and contrast the requirements of virgin and memory B cells for B-cell differentiation factors, a model system was developed in which low-density rat B cells isolated from 4-week primed antigen-draining lymph nodes were cultured in vitro. This large low-density cell population contained B cells which were 90% surface IgM positive and 60% IgD positive and showed moderately elevated Ia staining. When the cell population was stimulated with antigen plus lymphokines or lymphokines alone, antigen-specific IgG antibody was secreted; this was used as a measure of memory cell differentiation. When the cell population was stimulated with mitogen (lipopolysaccharide plus dextran sulfate) plus lymphokines, polyclonal IgG and IgM secretion was seen and was used as a measure of virgin B-cell differentiation. Using this system, we found that lymphokines contained in a Con A-induced rat spleen cell supernatant (CSN) were sufficient to drive both memory and virgin B-cell differentiation. In contrast, lymphokines contained in the supernatant from the murine T-cell hybridoma B151K12 (B151CFS) were able to induce large amounts of polyclonal IgM and IgG secretion but did not support memory B-cell differentiation. When recombinant human IL-2 was added to these cultures, it acted synergistically to augment virgin B-cell differentiation, but this combination of lymphokines was still not able to support memory B-cell differentiation. Furthermore, recombinant rat interferon-gamma and a commercial source of human BCGF, with or without IL-2, were unable to promote significant virgin or memory B-cell differentiation. These data support the hypothesis that memory B cells and virgin B cells differ in their lymphokine requirements for differentiation into antibody-secreting cells.  相似文献   

15.
Murine CD4+ T cell clones have been classified into at least two subsets, Th1 and Th2, on the basis of their distinct lymphokine secretion profiles and functions. In the present study, we compared the functional responses of Th1 and Th2 clones to Ag presentation by splenic B cells and peritoneal macrophages. Th2 clones secreted IL-4 in response to Ag presented by resting B cells, but their optimal proliferation required the addition of IL-1 or a source of IL-1. The degree of IL-1 dependence varied among the four Th2 clones examined. In contrast, Th1 clones secreted IL-2 and proliferated in response to Ag presented by both B cells and macrophages, without any requirement for exogenous IL-1. Furthermore, the proliferation of Th2 clones in response to Ag presented by splenocytes or macrophages was inhibited by an IL-1R antagonist. These results indicate that IL-1 is an important costimulator for the expansion of the Th2 subset of CD4+ T cells. The different requirements for the proliferation of Th1 and Th2 cells may be responsible for the preferential expansion of one or the other subset under different conditions of immunization.  相似文献   

16.
To test the hypothesis that resting and previously activated B lymphocytes differ in their proliferative and differentiative responses to various Th cell-derived stimuli, we have examined the interactions of purified small (resting) and large (activated) murine B cells with rabbit Ig-specific Th1 and Th2 clones in the presence of the Ag analogue, rabbit anti-mouse Ig antibody. Small numbers of Th2 cells induce strong Ag-dependent proliferation of and Ig secretion by both resting and activated B lymphocytes. In contrast, Th1 clones stimulate lower responses of activated B cells and fail to stimulate small resting B cells. An interaction with Th1 clones does make small B cells responsive to the Th2-derived cytokine, IL-4, indicating that Th1 clones are capable of delivering some but not all the stimuli necessary for the induction of humoral immunity. Finally, in order to compare the responses of small and large B cells to cognate interactions and secreted cytokines, we used an autoreactive I-Ak-specific Th2 line. This line induces proliferation of and Ig secretion by I-Ak expressing but not H-2d resting and activated B cells as a result of cognate interactions. However, when the H-2d B cells are bystanders in the presence of cytokine secretion by this Th2 line, or are directly exposed to Th2-derived cytokines, both small and large B cells are induced to proliferate but only the large B cells secrete antibody. These results indicate that the magnitude and nature of antibody responses depend on three principal factors: the cytokines produced by Th cells, the state of activation of the responding B lymphocytes, and whether the B cells are recipients of cognate help or are bystanders at the site of T cell stimulation. Our findings also confirm the view that cognate T-B interactions are most efficient for initiating B cell responses and may allow B cells to subsequently respond to a variety of T cell-derived cytokines.  相似文献   

17.
18.
The kinetics of lymphokine RNA induction and secretion of biologically active lymphokine from CD4-enriched splenic T cell populations was investigated. Cells stimulated immediately after isolation from murine spleen ("fresh" T cells) and cells restimulated after 4 days of in vitro culture ("primed" T cells) were compared. Northern blot analysis and bioassays were used to analyze and quantitate production of eight lymphokines and the IL-2R. Fresh T cells produced high levels of IL-2 and low to moderate levels of IL-3, granulocyte/macrophage-CSF, and IFN-gamma. In vitro primed T cells produced IL-2, IL-3, IL-4, IL-5, IL-6, granulocyte/macrophage-CSF, IFN-gamma, and high levels of IL-2R RNA. Comparison of RNA levels and bioassays of supernatants from these populations indicated that primed T cells produced at least 10-fold more of six of the lymphokines than fresh T cells. Only IL-2 was produced in near equal amounts by fresh and primed T cells. There were also marked differences in the kinetics of lymphokine production by fresh and primed CD4+ T cells. After restimulation with Con A and PMA, primed cells produced a short burst of lymphokine RNA that peaked between 7.5 and 13 h and declined after 18 h. Fresh T cells lagged in the initial production of lymphokine RNA, with levels peaking 18 to 44 h after mitogenic stimulation. Depletion of CD4+ cells indicated that cells of helper phenotype were responsible for the majority of lymphokine production from the primed cells. Thus different subpopulations of Th cells defined by their respective ability to respond either directly (fresh T cells) or only after culture and restimulation (primed T cells) show different patterns of lymphokine gene regulation. Other studies suggest that the activity of "fresh" Th cells is due to a population with a "memory" phenotype, while the cells which require culture have a "precursor" phenotype. These distinct patterns of lymphokine gene regulation in the two populations of Th cells may account in part for differences seen in the kinetics and magnitude of the naive and memory immune responses which are regulated by Th cells.  相似文献   

19.
The murine B cell FcR for IgG (Fc gamma RII) is a membrane glycoprotein reported to mediate inhibition of B cell activation and differentiation. We show that IL-4 inhibits the enhanced expression of Fc gamma RII by LPS-stimulated B cells. This activity is completely reversed by anti-IL-4 mAb and is specific, in that multiple other lymphokines tested do not exert a similar effect. This effect of IL-4 is apparent by day 1 of culture, although maximal inhibition occurs on day 4 at a concentration of 500 U/ml. The IL-4-induced inhibition of enhanced Fc gamma RII expression by LPS stimulation observed on day 4 of culture is associated with a significant reduction in the steady state level of Fc gamma RII beta gene-specific mRNA. IFN-gamma which inhibits many of the effects of IL-4 on B cells, does not reverse the IL-4-induced inhibition of Fc gamma RII membrane expression nor the levels of beta gene-specific mRNA. Fc gamma RII expression is significantly increased in B cells stimulated with antigen-specific, CD4+ T cell clones of the Th1 type (i.e., IL-2 and IFN-gamma-producing). By contrast, three different Th2 clones (i.e., IL-4-producing) fail to stimulate an increase in Fc gamma RII levels. Anti-IL-4 mAb significantly enhanced Fc gamma RII expression by Th2-stimulated B cells indicating that IL-4 was the active, inhibitory, substance produced by the Th2 cells. Supernatants from stimulated Th2 clones inhibited the enhanced expression of Fc gamma RII by LPS-stimulated B cells and this activity was completely reversed by anti-IL-4 mAb. By contrast, supernatants from stimulated Th1 clones further enhanced Fc gamma RII expression by LPS-stimulated B cells. The differential regulation of B cell Fc gamma RII expression by Th subsets may play an important role in the regulation of humoral immunity by altering the sensitivity of B cells to IgG immune complex-mediated inhibition of B cell activation and differentiation in vivo.  相似文献   

20.
We have studied the properties of several developmentally defined subpopulations of CD4+ T cells from normal animals which can be stimulated to secrete lymphokines. We find that the Th cells responsible for direct secretion of lymphokines after stimulation are from a resting, very long lived subpopulation of CD4+ T cells which persists for over 25 wk after adult thymectomy. These T cells are depleted by in vivo administration of antithymocyte serum and they are enriched among T cells which express high levels of Pgp-1. This phenotype suggests that the T cells responsible are most likely memory T cells which have resulted from antigen exposure in vivo. T cells in this subset secrete predominantly IL-2 with small quantities of IL-3, granulocyte/macrophage CSF, and IFN-gamma. In contrast, the CD4+ T cells which require in vitro culture and restimulation before they develop into an effector population with the ability to secrete lymphokines after restimulation, differ dramatically by most of these criteria. The precursors we study are resting Th cells which are considerably shorter lived after adult thymectomy (5 to 10 wk) and resistant to the same doses of antithymocyte serum which deplete the putative memory population. We hypothesize that this precursor population represents naive helper cells which have not yet encountered Ag. The effectors derived from such precursors can be stimulated to secrete high levels of both Th cell types 1 and 2 lymphokines (IFN-gamma, IL-4, IL-5, granulocyte/macrophage CSF, and IL-3). Generation of effectors requires proliferation and differentiation events which occur during a mandatory culture with lymphokines and antigen presenting cells for 3 to 4 days. We discuss the striking phenotypic and functional differences among these subpopulations of helper cells--the precursor population and the two types--memory and cultured effector Th which secrete lymphokines. We also discuss the relationship of these populations to CD4+ T cell subsets defined by other studies of patterns of lymphokine secretion and by cell surface phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号