首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   763314篇
  免费   82588篇
  国内免费   309篇
  2016年   8871篇
  2015年   11741篇
  2014年   13874篇
  2013年   20051篇
  2012年   22245篇
  2011年   22972篇
  2010年   15743篇
  2009年   14538篇
  2008年   20731篇
  2007年   21824篇
  2006年   20496篇
  2005年   19490篇
  2004年   19659篇
  2003年   18847篇
  2002年   18473篇
  2001年   30668篇
  2000年   30778篇
  1999年   24570篇
  1998年   8798篇
  1997年   9237篇
  1996年   8682篇
  1995年   8467篇
  1994年   8251篇
  1993年   8385篇
  1992年   21360篇
  1991年   21080篇
  1990年   20870篇
  1989年   20374篇
  1988年   19385篇
  1987年   18404篇
  1986年   17226篇
  1985年   17499篇
  1984年   14616篇
  1983年   12601篇
  1982年   9816篇
  1981年   8793篇
  1980年   8448篇
  1979年   14099篇
  1978年   11096篇
  1977年   10366篇
  1976年   9923篇
  1975年   10708篇
  1974年   11922篇
  1973年   11659篇
  1972年   10852篇
  1971年   9874篇
  1970年   8651篇
  1969年   8595篇
  1968年   8140篇
  1967年   6927篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
1.
Developmental axon branching dramatically increases synaptic capacity and neuronal surface area. Netrin-1 promotes branching and synaptogenesis, but the mechanism by which Netrin-1 stimulates plasma membrane expansion is unknown. We demonstrate that SNARE-mediated exocytosis is a prerequisite for axon branching and identify the E3 ubiquitin ligase TRIM9 as a critical catalytic link between Netrin-1 and exocytic SNARE machinery in murine cortical neurons. TRIM9 ligase activity promotes SNARE-mediated vesicle fusion and axon branching in a Netrin-dependent manner. We identified a direct interaction between TRIM9 and the Netrin-1 receptor DCC as well as a Netrin-1–sensitive interaction between TRIM9 and the SNARE component SNAP25. The interaction with SNAP25 negatively regulates SNARE-mediated exocytosis and axon branching in the absence of Netrin-1. Deletion of TRIM9 elevated exocytosis in vitro and increased axon branching in vitro and in vivo. Our data provide a novel model for the spatial regulation of axon branching by Netrin-1, in which localized plasma membrane expansion occurs via TRIM9-dependent regulation of SNARE-mediated vesicle fusion.  相似文献   
2.
3.
4.
5.

Background

The American College of Medical Genetics and American College of Pathologists (ACMG/AMP) variant classification guidelines for clinical reporting are widely used in diagnostic laboratories for variant interpretation. The ACMG/AMP guidelines recommend complete concordance of predictions among all in silico algorithms used without specifying the number or types of algorithms. The subjective nature of this recommendation contributes to discordance of variant classification among clinical laboratories and prevents definitive classification of variants.

Results

Using 14,819 benign or pathogenic missense variants from the ClinVar database, we compared performance of 25 algorithms across datasets differing in distinct biological and technical variables. There was wide variability in concordance among different combinations of algorithms with particularly low concordance for benign variants. We also identify a previously unreported source of error in variant interpretation (false concordance) where concordant in silico predictions are opposite to the evidence provided by other sources. We identified recently developed algorithms with high predictive power and robust to variables such as disease mechanism, gene constraint, and mode of inheritance, although poorer performing algorithms are more frequently used based on review of the clinical genetics literature (2011–2017).

Conclusions

Our analyses identify algorithms with high performance characteristics independent of underlying disease mechanisms. We describe combinations of algorithms with increased concordance that should improve in silico algorithm usage during assessment of clinically relevant variants using the ACMG/AMP guidelines.
  相似文献   
6.
We present a new seed dormancy classification scheme for the non‐deep level of the class physiological dormancy (PD), which contains six types. Non‐deep PD is divided into two sublevels: one for seeds that exhibit a dormancy continuum (types 1, 2 and 3) and the other for those that do not exhibit a dormancy continuum (types 4, 5 and 6). Analysis of previous studies showed that different types of non‐deep PD also can be identified using a graphical method. Seeds with a dormancy (D) ? conditional dormancy (CD) ? non‐dormancy (ND) cycle have a low germination percentage in the early stages of CD, and during dormancy loss the germination capacity increases. However, seeds with a CD/ND (i.e. D→CD?ND) cycle germinate to a high percentage at a narrow range of temperatures in the early stages of CD. Cardinal temperatures for seeds with either a D/ND or a CD/ND cycle change during dormancy loss: the ceiling temperature increases in seeds with Type 1, the base temperature decreases in seeds with Type 2 and the base and ceiling temperatures decrease and increase, respectively, in seeds with Type 3. Criteria for distinguishing the six types of non‐deep PD and models of the temperature functions of seeds with types 1, 2 and 3 with both types of dormancy cycles are presented. The relevancy of our results to modelling the timing of weed seedling emergence is briefly discussed.  相似文献   
7.
The claustrum in Cnidaria is a tissue in the gastrovascular cavity delimited by a central layer of mesoglea surrounded by gastrodermis (i.e., gastrodermis-mesoglea-gastrodermis), without communication with epidermis. By dividing the gastrovascular cavity, the four claustra provide an additional level of complexity. The presence of claustra in Cubozoa and Staurozoa has been used as evidence supporting a close relationship between these two cnidarian classes. However, the detailed anatomy of the claustrum has never been comparatively analyzed, rendering the evolution of this character among Cnidaria and its homology in Staurozoa and Cubozoa uncertain. This study provides a comparative investigation of the internal anatomy of the claustrum in Staurozoa and Cubozoa, addressing its evolutionary history based on recent phylogenetic hypotheses for Cnidaria. We conclude that the claustrum is a character exclusive to some species of Staurozoa, with a homoplastic evolution in the class, and that the structure called the “claustrum” in Cubozoa corresponds to the valve of gastric ostium, a structure at the base of the manubrium, which is also present in Staurozoa with and without claustrum. Thus, the claustrum cannot be a synapomorphy of a hypothetical clade uniting Staurozoa and Cubozoa, nor can its hypothetical presence in enigmatic fossils be used to support cubozoan affinities.  相似文献   
8.
Pericytes are CD146+ perivascular cells (PCs) that have multipotential differentiation capacity as mesenchymal stem cells. Beside their crucial roles in vascular development and blood flow regulation, they have ability to differentiate into vascular cell types in vivo. These properties make pericytes preferred cells in the field of vascular tissue engineering. Culture medium for in vitro differentiation of pericytes to vascular smooth muscle cells (SMCs) has not been defined yet. The aim of this study is to try different culture media for SMC differentiation of CD146+ PCs. For this purpose, CD146+ PCs were isolated from human umbilical cord vein. Then they were characterized by immunofluorescence staining and flow cytometric analysis. Three different culture media including; (1) Transforming growth factor beta 1 (TGF-β1)+ bone morphogenic protein 4, (2) TGF-β1+ l-ascorbic acid (l-AA) and (3) Horse serum, were compared for differentiation of CD146+ PCs to SMCs by IFS and real time polymerase chain reaction. As a result, in the case of SMC differentiation of CD146+ PCs, second culture medium including TGF-β1 and l-AA was found to be more effective than other two media. These results are important for establishing proper culture conditions for in vitro SMC differentiation of CD146+ PCs.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号