首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52042篇
  免费   4296篇
  国内免费   7533篇
  2024年   56篇
  2023年   936篇
  2022年   1026篇
  2021年   1518篇
  2020年   1638篇
  2019年   2156篇
  2018年   1753篇
  2017年   1803篇
  2016年   1917篇
  2015年   2100篇
  2014年   2692篇
  2013年   3609篇
  2012年   2193篇
  2011年   2572篇
  2010年   2141篇
  2009年   2852篇
  2008年   3017篇
  2007年   3046篇
  2006年   2871篇
  2005年   2765篇
  2004年   2456篇
  2003年   2270篇
  2002年   1927篇
  2001年   1558篇
  2000年   1356篇
  1999年   1291篇
  1998年   1132篇
  1997年   965篇
  1996年   912篇
  1995年   968篇
  1994年   893篇
  1993年   688篇
  1992年   674篇
  1991年   600篇
  1990年   473篇
  1989年   399篇
  1988年   404篇
  1987年   332篇
  1986年   267篇
  1985年   265篇
  1984年   272篇
  1983年   175篇
  1982年   213篇
  1981年   145篇
  1980年   137篇
  1979年   110篇
  1978年   98篇
  1977年   54篇
  1976年   53篇
  1974年   27篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Protein collective motions play a critical role in many biochemical processes. How to predict the functional motions and the related key residue interactions in proteins is important for our understanding in the mechanism of the biochemical processes. Normal mode analysis (NMA) of the elastic network model (ENM) is one of the effective approaches to investigate the structure-encoded motions in proteins. However, the motion modes revealed by the conventional NMA approach do not necessarily correspond to a specific function of protein. In the present work, a new analysis method was proposed to identify the motion modes responsible for a specific function of proteins and then predict the key residue interactions involved in the functional motions by using a perturbation approach. In our method, an internal coordinate that accounts for the specific function was introduced, and the Cartesian coordinate space was transformed into the internal/Cartesian space by using linear approximation, where the introduced internal coordinate serves as one of the axes of the coordinate space. NMA of ENM in this internal/Cartesian space was performed and the function-relevant motion modes were identified according to their contributions to the specific function of proteins. Then the key residue interactions important for the functional motions of the protein were predicted as the interactions whose perturbation largely influences the fluctuation along the internal coordinate. Using our proposed methods, the maltose transporter (MalFGK2) from E. Coli was studied. The functional motions and the key residue interactions that are related to the channel-gating function of this protein were successfully identified.  相似文献   
2.
In this article, we discuss molecular mechanisms involved in the evolution of amygdala kindling and the episodic loss of response to pharmacological treatments during tolerance development. These phenomena allow us to consider how similar principles (in different neurochemical systems) could account for illness progression, cyclicity, and drug tolerance in affective disorders. We describe the phenomenon of amygdala-kindled seizures episodically breaking through effective daily pharmacotherapy with carbamazepine and valproate, suggesting that these observations could reflect the balance of pathological vs compensatory illness-induced changes in gene expression. Under certain circumstances, amygdala-kindled animals that were initially drug responsive can develop highly individualized patterns of seizure breakthroughs progressing toward a complete loss of drug efficacy. This initial drug efficacy may reflect the combination of drug-related exogenous neurochemical mechanisms and illness-induced endogenous compensatory mechanisms. However, we postulate that when seizures are inhibited, the endogenous illness-induced adaptations dissipate (the “time-off seizure” effect), leading to the re-emergence of seizures, a re-induction of a new, but diminished, set of endogenous compensatory mechanisms, and a temporary period of renewed drug efficacy. As this pattern repeats, an intermittent or cyclic response to the anticonvulsant treatment emerges, leading toward complete drug tolerance. We also postulate that the cyclic pattern accelerates over time because of both the failure of robust illness-induced endogenous adaptations to emerge and the progression in pathophysiological mechanisms (mediated by long-lasting changes in gene expression and their downstream consequences) as a result of repeated occurrences of seizures. In this seizure model, this pattern can be inhibited and drug responsivity can be temporarily reinstated by several manipulations, including lowering illness drive (decreasing the stimulation current.), increasing drug dosage, switching to a new drug that does not show crosstolerance to the original medication, or temporarily discontinuing treatment, allowing the illness to re-emerge in an unmedicated animal. Each of these variables is discussed in relation to the potential relevance to the emergence, progression, and suppression of individual patterns of episodic cyclicity in the recurrent affective disorders. A variety of clinical studies are outlined that specifically test the hypotheses derived from this formulation. Data from animal studies suggest that illness cyclicity can develop from the relative ratio between primary pathological processes and secondary endogenous adaptations (assisted by exogenous medications). If this proposition is verified, it further suggests that illness cyclicity is inherent to the neurobiological processes of episode emergence and amelioration, and one does not need to postulate a separate defect in the biological clock. The formulation predicts that early and aggressive long-term interventions may be optimal in order to prevent illness emergence and progression and its associated accumulating neurobiological, vulnerability factors.  相似文献   
3.
A new genetic polymorphism of an unidentified plasma protein (PLP1) in pigs was described by using a method of two-dimensional gel electrophoresis and protein staining. Two codominant alleles, with frequencies of 0.83 and 0.17, were found in the Swedish Yorkshire breed. The PLP1 marker was typed in a three-generation pedigree and tested for linkage against a set of 128 markers. The PLP1 locus showed significant LOD score values with three different microsatellite markers (S0092, DAGK and S005), previously assigned to chromosome 5.  相似文献   
4.
Abstract: The turnover of a CNS-specific cell adhesion glycoprotein, ependymin, has earlier been found to increase during periods of neuronal plasticity. Here, ependymin mRNA expression was analyzed by semiquantitative in situ hybridization in goldfish. Learning of an active avoidance response resulted in a significant increase in ependymin mRNA expression 20 min to 4 h after acquisition of the task. In contrast, yoked control animals that were exposed to the same numbers of conditioned and unconditioned stimuli in a random, unpaired manner exhibited a strong down-regulation of ependymin mRNA. Hybridization signals were also increased by injection of anti-ependymin antiserum into brain ventricles. Ependymin mRNA was exclusively localized to reticular-shaped fibroblasts of the inner endomeningeal cell layer. Immunoelectron microscopic investigation, however, revealed ependymin also in distinct neuronal and glial cell populations in which no ependymin mRNA had been detected. Uptake of meningeal protein factors into glial and neuronal cells may therefore be of functional importance for plastic adaptations of the CNS.  相似文献   
5.
This study was designed to test the biome dependency hypothesis, which predicts that similar assemblages of macroinvertebrates occur along rivers both within and among drainage basins if the basins occupy the same biome. Benthic macroinvertebrates were collected from three drainage basins within each of three biomes in Canada, the eastern deciduous forests (EDF) of southwestern Ontario, the grasslands of south-central Alberta, and the montane coniferous forests (MCF) of southeastern British Columbia. A total of 225 benthic samples (3 biomes × 3 rivers/biome × 5 sites/river × 5 samples/site) was collected in spring using a cylinder sampler.The significant interaction effect between biome and a site's location along a river indicated that spatial patterns of variation in total density and taxonomic composition were not spatially consistent among sites along rivers or among biomes. Total macroinvertebrate densities were equivalent between the EDF and grassland sites. However, total density was substantially lower at the MCF sites than at sites in the other two biomes. The greatest differences in taxonomic composition occurred among biomes, although significant differences also occurred for all other sources of variation examined. Macroinvertebrate composition was more strongly associated with local, site-specific factors (riparian vegetation and land use) than with longitudinal gradients. Distinct site-specific taxonomic assemblages were evident in EDF, but not in the other two biomes where land use was more homogeneous.  相似文献   
6.
Faster running is not performed with proportional increase in all joint torque/work exertions. Although previous studies have investigated lumbopelvic kinetics for a single velocity, it is unclear whether each lumbopelvic torque should increase for faster running. We examined the relationship between running velocity and lumbopelvic kinetics. We calculated the three-dimensional lumbosacral kinetics of 10 male sprinters during steady-state running on a temporary indoor running track at five target velocities: 3.0 (3.20 ± 0.16), 4.5 (4.38 ± 0.18), 6.0 (5.69 ± 0.47), 7.5 (7.30 ± 0.41), and maximal sprinting (9.27 ± 0.36 m/s). The lumbosacral axial rotation torque increased more markedly (from 0.37 ± 0.06 to 1.99 ± 0.46 Nm/kg) than the extension and lateral flexion torques. The increase in the axial rotation torque was larger above 7.30 m/s. Conversely, the extension and lateral flexion torques plateaued when running velocity increased above 7.30 m/s. Similar results were observed for mechanical work. The results indicate that faster running required larger lumbosacral axial rotation torque. Conversely, the extension and lateral flexion torques were relatively invariant to running velocity above 7 m/s, implying that faster running below 7 m/s might increase the biomechanical loads causing excessive pelvic posterior tilt and excessive pelvic drop which has the potential to cause pain/injury related to lumbopelvic extensors and lateral flexors, whereas these biomechanical loads might not relate with running velocity above 7 m/s.  相似文献   
7.
8.
《Journal of morphology》2017,278(2):215-227
Unlike most viviparous vertebrates, lamniform sharks develop functional teeth during early gestation. This feature is considered to be related to their unique reproductive mode where the embryo grows to a large size via feeding on nutritive eggs in utero. However, the developmental process of embryonic teeth is largely uninvestigated. We conducted X‐ray microcomputed tomography to observe the dentitions of early‐, mid‐, and full‐term embryos of the white shark Carcharodon carcharias (Lamniformes, Lamnidae). These data reveal the ontogenetic change of embryonic dentition of the species for the first time. Dentition of the early‐term embryos (∼45 cm precaudal length, PCL) is distinguished from adult dentition by 1) the presence of microscopic teeth in the distalmost region of the paratoquadrate, 2) a fang‐like crown morphology, and 3) a lack of basal concavity of the tooth root. The “intermediate tooth” of early‐term embryos is almost the same size as the adjacent teeth, suggesting that lamnoid‐type heterodonty (lamnoid tooth pattern) has not yet been established. We also discovered that mid‐term embryos (∼80 cm PCL) lack functional dentition. Previous studies have shown that the maternal supply of nutritive eggs in lamnoid sharks ceases during mid‐ to late‐gestation. Thus, discontinuation of functional tooth development is likely associated with the completion of the oophagous (egg‐eating) phase. Replacement teeth in mid‐term embryos include both embryonic and adult‐type teeth, suggesting that the embryo to adult transition in dental morphology occurs during this period. J. Morphol. 278:215–227, 2017. © 2016 Wiley Periodicals,Inc.  相似文献   
9.
10.
Streptococcus pyogenes is commonly found on pharynx, mouth and rarely on skin, lower gastrointestinal tract. It is a potential pathogen causing tonsillitis, pneumonia, endocarditis. The present study was undertaken to study the effects of low shear modeled microgravity on growth, morphology, antibiotic resistance, cross-stress resistance to various stresses and alteration in gene expression of S. pyogenes. The growth analysis performed using UV–Visible spectroscopy indicated decrease in growth of S. pyogenes under low shear modeled microgravity. Morphological analysis by Bio-transmission electron microscopy (TEM), Bio-scanning electron microscopy (SEM) did not reveal much difference between normal and low shear modeled microgravity grown S. pyogenes. The sensitivity of S. pyogenes to antibiotics ampicillin, penicillin, streptomycin, kanamycin, hygromycin, rifampicin indicates that the bacterium is resistant to hygromycin. Further S. pyogenes cultured under low shear modeled microgravity was found to be more sensitive to ampicillin and rifampicin as compared with normal gravity grown S. pyogenes. The bacteria were tested for the acid, osmotic, temperature and oxidative cross stress resistances. The gene expression of S. pyogenes under low shear modeled microgravity analyzed by microarray revealed upregulation of 26 genes and down regulation of 22 genes by a fold change of 1.5.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号