首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Knee instability following anterior cruciate ligament (ACL) rupture compromises function and increases risk of injury to the cartilage and menisci. To understand the biomechanical function of the ACL, previous studies have primarily reported the net change in tibial position in response to multiplanar torques, which generate knee instability. In contrast, we retrospectively analyzed a cohort of 13 consecutively tested cadaveric knees and found distinct motion patterns, defined as the motion of the tibia as it translates and rotates from its unloaded, initial position to its loaded, final position. Specifically, ACL-sectioned knees either subluxated anteriorly under valgus torque (VL-subluxating) (5 knees) or under a combination of valgus and internal rotational torques (VL/IR-subluxating) (8 knees), which were applied at 15 and 30° flexion using a robotic manipulator. The purpose of this study was to identify differences between these knees that could be driving the two distinct motion patterns. Therefore, we asked whether parameters of bony geometry and tibiofemoral laxity (known risk factors of non-contact ACL injury) as well as in situ ACL force, when it was intact, differentiate knees in these two groups. VL-subluxating knees exhibited greater sagittal slope of the lateral tibia by 3.6 ± 2.4° (p = 0.003); less change in anterior laxity after ACL-sectioning during a simulated Lachman test by 3.2 ± 3.2 mm (p = 0.006); and, at the peak applied valgus torque (no internal rotation torque), higher posteriorly directed, in situ ACL force by 13.4 ± 11.3 N and 12.0 ± 11.6 N at 15° and 30° of flexion, respectively (both p ≤ 0.03). These results may suggest that subgroups of knees depend more on their ACL to control lateral tibial subluxation in response to uniplanar valgus and multiplanar valgus and internal rotation torques as mediated by anterior laxity and bony morphology.  相似文献   

2.
This study investigated how baseball players generate large angular velocity at each joint by coordinating the joint torque and velocity-dependent torque during overarm throwing. Using a four-segment model (i.e., trunk, upper arm, forearm, and hand) that has 13 degrees of freedom, we conducted the induced acceleration analysis to determine the accelerations induced by these torques by multiplying the inverse of the system inertia matrix to the torque vectors. We found that the proximal joint motions (i.e., trunk forward motion, trunk leftward rotation, and shoulder internal rotation) were mainly accelerated by the joint torques at their own joints, whereas the distal joint motions (i.e., elbow extension and wrist flexion) were mainly accelerated by the velocity-dependent torques. We further examined which segment motion is the source of the velocity-dependent torque acting on the elbow and wrist accelerations. The results showed that the angular velocities of the trunk and upper arm produced the velocity-dependent torque for initial elbow extension acceleration. As a result, the elbow joint angular velocity increased, and concurrently, the forearm angular velocity relative to the ground also increased. The forearm angular velocity subsequently accelerated the elbow extension and wrist flexion. It also accelerated the shoulder internal rotation during the short period around the ball-release time. These results indicate that baseball players accelerate the distal elbow and wrist joint rotations by utilizing the velocity-dependent torque that is originally produced by the proximal trunk and shoulder joint torques in the early phase.  相似文献   

3.
Muscle activities of the lower limb during level and uphill running   总被引:2,自引:1,他引:1  
This study aimed to compare the muscle activities of the lower limb during overground level running (LR) and uphill running (UR) by using a musculoskeletal model. Six male distance runners ran at three running speeds (slow: 3.3 m/s; medium: 4.2 m/s; and high: 5.0 m/s) on a level runway and a slope of 9.1% grade in which force platforms were mounted. A musculoskeletal leg model and optimization were used to estimate the muscle activation and muscle torque from the joint torque of the lower limb calculated by the inverse dynamics approach. At high speed, the activation and muscle torque of the muscle groups surrounding the hip joints, such as the hamstrings and iliopsoas, during the recovery phase were significantly greater during UR than during LR. At all the running speeds, the knee extension torque by the vasti during the support phase was significantly smaller during UR. Further, the hip flexion and knee extension torques by the rectus femoris during UR were significantly greater than those during LR at all the speeds; this would play a role in compensating for the decrease in the knee extension torque by the vasti and in maintaining the trunk in a forward-leaning position. These results revealed that the activation and muscle torque of the hip extensors and flexors were augmented during UR at the high speed.  相似文献   

4.
Animals are becoming more and more common as in vivo models for the human spine. Especially the sheep cervical spine is stated to be of good comparability and usefulness in the evaluation of in vivo radiological, biomechanical and histological behaviour of new bone replacement materials, implants and cages for cervical spine interbody fusion. In preceding biomechanical in vitro examinations human cervical spine specimens were tested after fusion with either a cubical stand-alone interbody fusion cage manufactured from a new porous TiO2/glass composite (Ecopore) or polymethylmethacrylate (PMMA) after discectomy. Following our first experience with the use of the new material and its influence on the primary stability after in vitro application we carried out fusions of 20 sheep cervical spines levels with either PMMA or an Ecopore-cage, and performed radiological examinations during the following 2-4 months. In this second part of the study we intended the biomechanical evaluation of the spine segments with reference to the previously determined morphological findings, like subsidence of the implants, significant increase of the kyphosis angle and degree of the bony fusion along with the interpretation of the results. 20 sheep cervical spines segments with either PMMA- or Ecopore-fusion in the levels C2/3 and C4/5 were tested, in comparison to 10 native corresponding sheep cervical spine segments. Non-destructive biomechanical testing was performed, including flexion/extension, lateral bending and axial rotation using a spine testing apparatus. Three-dimensional range of motion (ROM) was evaluated using an ultrasound measurement system. In the native spine segments C2/3 and C4/5 the ROM increased in cranio-caudal direction particulary in flexion/extension, less pronounced in lateral flexion and axial rotation (p < 0.05). The overall ROM of both tested segments was greatest in lateral flexion, reduced to 52% in flexion/extension and to 16% in axial rotation. After 2 months C2/3- and C4/5-segments with PMMA-fusion and C2/3-segments with Ecopore-interposition showed decrease of ROM in lateral flexion in comparison to the native segments, indicating increasing stiffening. However, after 4 months all operated segments, independent from level or implanted material, were stiffer than the comparable native segments. The decrease of the ROM correlated with the radiological-morphological degree of fusion. Our evaluation of the new porous TiO2/glass composite as interbody fusion cage has shown satisfactory radiological results as well as distinct biomechanical stability and fusion of the segments after 4 months in comparison to PMMA. After histological analysis of the bone-biomaterial-interface, further examinations of this biomaterial previous to an application as alternative to other customary cages in humans are necessary.  相似文献   

5.
Static and dynamic assessment of the Biodex dynamometer   总被引:2,自引:0,他引:2  
The validity and accuracy of the Biodex dynamometer was investigated under static and dynamic conditions. Static torque and angular position output correlated well with externally derived data (r = 0.998 and r greater than 0.999, respectively). Three subjects performed maximal voluntary knee extensions and flexions at angular velocities from 60 to 450 degrees.s-1. Using linear accelerometry, high speed filming and Biodex software, data were collected for lever arm angular velocity and linear accelerations, and subject generated torque. Analysis of synchronized angular position and velocity changes revealed the dynamometer controlled angular velocity of the lever arm to within 3.5% of the preset value. Small transient velocity overshoots were apparent on reaching the set velocity. High frequency torque artefacts were observed at all test velocities, but most noticeably at the faster speeds, and were associated with lever arm accelerations accompanying directional changes, application of resistive torques by the dynamometer, and limb instability. Isokinematic torques collected from ten subjects (240, 300 and 400 degrees.s-1) identified possible errors associated with reporting knee extension torques at 30 degrees of flexion. As a result of tissue and padding compliance, leg extension angular velocity exceeded lever arm angular velocity over most of the range of motion, while during flexion this compliance meant that knee and lever arm angles were not always identical, particularly at the start of motion. Nevertheless, the Biodex dynamometer was found to be both a valid and an accurate research tool; however, caution must be exercised when interpreting and ascribing torques and angular velocities to the limb producing motion.  相似文献   

6.
Quantitative changes in valgus/varus knee stability with different levels of muscular activity were determined for five subjects. A specially designed machine was used to measure resistance to angulation in the frontal plane. This device held the thigh stationary, the knee straight, an cycled the leg from side to side at a constant rate between present moment limits. Resistance to this forced valgus/varus motion was measured simultaneously with torque about the knee in the sagittal plane. Muscle activity was monitored by electromyography (EMG). Direct comparison of moment-rotation characteristics allowed changes in stability to be quantified as a function of extension and flexion torque. Extension torques less than 20% of the maximum increased varus stability more than valgus stability. Flexion torques of the same relative magnitude increased valgus stability more than varus stability. Comparison with the literature suggested that prevention of opening of the lateral side of the joint under varus loading was responsible for increased varus stability with increasing torque, both with extension and flexion torques.  相似文献   

7.
Nucleus replacement was deemed to have therapeutic potential for patients with intervertebral disc herniation. However, whether a patient would benefit from nucleus replacement is technically unclear. This study aimed to investigate the influence of nucleus pulposus (NP) removal on the biomechanical behavior of a lumbar motion segment and to further explore a computational method of biomechanical characteristics of NP removal, which can evaluate the mechanical stability of pulposus replacement. We, respectively, reconstructed three types of models for a mildly herniated disc and three types of models for a severely herniated disc based on a L4–L5 segment finite element model with computed tomography image data from a healthy adult. First, the NP was removed from the herniated disc models, and the biomechanical behavior of NP removal was simulated. Second, the NP cavities were filled with an experimental material (Poisson's ratio = 0.3; elastic modulus = 3 MPa), and the biomechanical behavior of pulposus replacement was simulated. The simulations were carried out under the five loadings of axial compression, flexion, lateral bending, extension, and axial rotation. The changes of the four biomechanical characteristics, i.e. the rotation degree, the maximum stress in the annulus fibrosus (AF), joint facet contact forces, and the maximum disc deformation, were computed for all models. Experimental results showed that the rotation range, the maximum AF stress, and joint facet contact forces increased, and the maximum disc deformation decreased after NP removal, while they changed in the opposite way after the nucleus cavities were filled with the experimental material.  相似文献   

8.
Isokinetic dynamometers measure joint torques about a single fixed rotational axis. Previous studies yet suggested that muscles produce both tangential and radial forces during a movement, so that the contact forces exerted to perform this movement are multidirectional. Then, isokinetic dynamometers might neglect the torque components about the two other Euclidean space axes. Our objective was to experimentally quantify the shear forces impact on the overall shoulder torque, by comparing the dynamometer torque to the torque computed from the contact forces at the hand and elbow. Ten healthy women performed isokinetic maximal internal/external concentric/eccentric shoulder rotation movements. The hand and elbow contact forces were measured using two six-axis force sensors. The main finding is that the contact forces at the hand were not purely tangential to the direction of the movement (effectiveness indexes from 0.26 ± 0.25 to 0.54 ± 0.20), such that the resulting shoulder torque computed from the two force sensors was three-dimensional. Therefore, the flexion and abduction components of the shoulder torque measured by the isokinetic dynamometer were significantly underestimated (up to 94.9%). These findings suggest that musculoskeletal models parameters should not be estimated without accounting for the torques about the three space axes.  相似文献   

9.
In this study, the three-dimensional stabilizing capabilities of the AO-Internal Fixator (IF) and the new Universal Spine System (USS) were investigated. Both devices were tested without and with the cross-link system (IF, IFC, USS, USSC). To determine biomechanical characteristics, a human thoracolumbar spine instability model with resection of the vertebral body Th12 was created. The vertebral body was replaced by a spacer and transpedicular posterior stabilization was performed from Th11 to L1. All devices reduced the range of motion (ROM) significantly compared to the values of the intact specimen. In flexion the IFC showed the highest reduction of ROM (85% of intact), followed by the USSC, USS and IF (79% of intact). In extension the ROM was restored again most by the IFC (52% of intact), followed by the USSC, IF and USS (44% of intact). In lateral bending stability was provided by the USSC (right 78% and left 81% of intact), followed in right lateral bending by the IF, IFC and USS and in left lateral bending by the USS, IF and IFC. In axial rotation the ROM was reduced primary by the IFC (right 51% and left 46% of intact), followed in right axial rotation by the USS, USSC and IF, in left axial rotation by the USSC, USS and IF. Additional stability by crosslinking has been provided in the IF and the USS in flexion and extension, in the USS in lateral bending and in the IF in axial rotation nonsignificantly. The neutral zone (NZ) was reduced by posterior instrumentation in flexion/extension and right/left lateral bending significantly. In axial rotation only the USSC decreased the NZ below intact levels. The study showed no statistical significant differences in the stabilizing capabilities of the USS compared to the IF. For both implants the cross-link system increased stability in the chosen instability model insignificantly only.  相似文献   

10.
The effects of the rib cage on thoracic spine loading are not well studied, but the rib cage may provide stability or share loads with the spine. Intervertebral disc pressure provides insight into spinal loading, but such measurements are lacking in the thoracic spine. Thus, our objective was to examine thoracic intradiscal pressures under applied pure moments, and to determine the effect of the rib cage on these pressures. Human cadaveric thoracic spine specimens were positioned upright in a testing machine, and Dynamic pure moments (0 to ±5 N·m) with a compressive follower load of 400 N were applied in axial rotation, flexion - extension, and lateral bending. Disc pressures were measured at T4-T5 and T8-T9 using needle-mounted pressure transducers, first with the rib cage intact, and again after the rib cage was removed. Changes in pressure vs. moment slopes with rib cage removal were examined. Pressure generally increased with applied moments, and pressure-moment slope increased with rib cage removal at T4-T5 for axial rotation, extension, and lateral bending, and at T8-T9 for axial rotation. The results suggest the intact rib cage carried about 62% and 56% of axial rotation moments about T4-T5 and T8-T9, respectively, as well as 42% of extension moment and 36–43% of lateral bending moment about T4-T5 only. The rib cage likely plays a larger role in supporting moments than compressive loads, and may also play a larger role in the upper thorax than the lower thorax.  相似文献   

11.
The biomechanical effect of tensioning the lumbar fasciae (LF) on the stability of the spine during sagittal plane motion was analysed using a validated finite element model of the normal lumbosacral spine (L4-S1). To apply the tension in the LF along the direction of the fibres, a local coordinate was allocated using dummy rigid beam elements that originated from the spinous process. Up to 10 Nm of flexion and 7.5 Nm of extension moment was applied with and without 20 N of lateral tension in the LF. A follower load of 400 N was additionally applied along the curvature of the spine. To identify how the magnitude of LF tension related to the stability of the spine, the tensioning on the fasciae was increased up to 40 N with an interval of 10 N under 7.5 Nm of flexion/extension moment. A fascial tension of 20 N produced a 59% decrease in angular motion at 2.5 Nm of flexion moment while there was a 12.3% decrease at 10 Nm in the L5-S1 segment. Its decrement was 53 and 9.6% at 2.5 Nm and 10 Nm, respectively, in the L4-L5 segment. Anterior translation was reduced by 12.1 and 39.0% at the L4-L5 and L5-S1 segments under 10 Nm of flexion moment, respectively. The flexion stiffness shows an almost linear increment with the increase in fascial tension. The results of this study showed that the effect of the LF on the stability of the spine is significant.  相似文献   

12.

Objective

The objective of this biomechanical study was to evaluate the stability provided by a newly developed shape memory alloy hook (SMAH) in a cadaveric transforaminal lumbar interbody fusion (TLIF) model.

Methods

Six human cadaveric spines (L1-S2) were tested in an in vitro flexibility experiment by applying pure moments of ±8 Nm in flexion/extension, left/right lateral bending, and left/right axial rotation. After intact testing, a TLIF was performed at L4-5. Each specimen was tested for the following constructs: unilateral SMAH (USMAH); bilateral SMAH (BSMAH); unilateral pedicle screws and rods (UPS); and bilateral pedicle screws and rods (BPS). The L3–L4, L4–L5, and L5-S1 range of motion (ROM) were recorded by a Motion Analysis System.

Results

Compared to the other constructs, the BPS provided the most stability. The UPS significantly reduced the ROM in extension/flexion and lateral bending; the BSMAH significantly reduced the ROM in extension/flexion, lateral bending, and axial rotation; and the USMAH significantly reduced the ROM in flexion and left lateral bending compared with the intact spine (p<0.05). The USMAH slightly reduced the ROM in extension, right lateral bending and axial rotation (p>0.05). Stability provided by the USMAH compared with the UPS was not significantly different. ROMs of adjacent segments increased in all fixed constructs (p>0.05).

Conclusions

Bilateral SMAH fixation can achieve immediate stability after L4–5 TLIF in vitro. Further studies are required to determine whether the SMAH can achieve fusion in vivo and alleviate adjacent segment degeneration.  相似文献   

13.
14.
15.
The objective of the present study was to establish test–retest reliability of isokinetic hip torque and prime mover electromyogram (EMG) through the three cardinal planes of motion. Thirteen healthy young adults participated in two experimental sessions, separated by approximately one week. During each session, isokinetic hip torque was evaluated on the Biodex Isokinetic Dynamometer at a velocity of 60 deg/s. Subjects performed three maximal-effort concentric and eccentric contractions, separately, for right and left hip abduction/adduction, flexion/extension, and internal/external rotation. Surface EMGs were sampled from the gluteus maximus, gluteus medius, adductor, medial and lateral hamstring, and rectus femoris muscles during all contractions. Intraclass correlation coefficients (ICC – 2,1) and standard errors of measurement (SEM) were calculated for peak torque for each movement direction and contraction mode, while ICCs were only computed for the EMG data. Motions that demonstrated high torque reliability included concentric hip abduction (right and left), flexion (right and left), extension (right) and internal rotation (right and left), and eccentric hip abduction (left), adduction (left), flexion (right), and extension (right and left) (ICC range = 0.81–0.91). Motions with moderate torque reliability included concentric hip adduction (right), extension (left), internal rotation (left), and external rotation (right), and eccentric hip abduction and adduction (right), flexion (left), internal rotation (right and left), and external rotation (right and left) (ICC range = 0.49–0.79). The majority of the EMG sampled muscles (n = 12 and n = 11 for concentric and eccentric contractions, respectively) demonstrated high reliability (ICC = 0.81–0.95). Instances of low, or unacceptable, EMG reliability values occurred for the medial hamstring muscle of the left leg (both contraction modes) and the adductor muscle of the right leg during eccentric internal rotation. The major finding revealed high and moderate levels of between-day reliability of isokinetic hip peak torque and prime mover EMG. It is recommended that the day-to-day variability estimates concomitant with acceptable levels of reliability be considered when attempting to objectify intervention effects on hip muscle performance.  相似文献   

16.
The mechanical coupling behaviour of the thoracic spine is still not fully understood. For the validation of numerical models of the thoracic spine, however, the coupled motions within the single spinal segments are of importance to achieve high model accuracy. In the present study, eight fresh frozen human thoracic spinal specimens (C7-L1, mean age 54 ± 6 years) including the intact rib cage were loaded with pure bending moments of 5 Nm in flexion/extension (FE), lateral bending (LB), and axial rotation (AR) with and without a follower load of 400 N. During loading, the relative motions of each vertebra were monitored. Follower load decreased the overall ROM (T1-T12) significantly (p < 0.01) in all primary motion directions (extension: −46%, left LB: −72%, right LB: −72%, left AR: −26%, right AR: −26%) except flexion (−36%). Substantial coupled motion was found in lateral bending with ipsilateral axial rotation, which increased after a follower load was applied, leading to a dominant axial rotation during primary lateral bending, while all other coupled motions in the different motion directions were reduced under follower load. On the monosegmental level, the follower load especially reduced the ROM of the upper thoracic spine from T1-T2 to T4-T5 in all motion directions and the ROM of the lower thoracic spine from T9-T10 to T11-T12 in primary lateral bending. The facet joints, intervertebral disc morphologies, and the sagittal curvature presumably affect the thoracic spinal coupled motions depending on axial compressive preloading. Using these results, the validation of numerical models can be performed more accurately.  相似文献   

17.
This study evaluated the reactive biomechanical strategies associated with both upper- and lower-body (lead and trail limbs) following the first exposures to (un)expected stepdown at comfortable (1.22 ± 0.08 m/s) and fast (1.71 ± 0.11 m/s) walking velocities. Eleven healthy adults completed 34 trails per walking velocity over an 8-m, custom-built track with two forceplates embedded in its center. For the expected stepdown, the track was lowered by 0-, −10- and −20-cm from the site of the second forceplate, whereas the unexpected stepdown was created by camouflaging the second forceplate (−10-cm). Two-way repeated-measurement ANOVAs detected no velocity-related effects of stepdown on kinematic and kinetic parameters during lead limb stance-phase, and on the trail limb stepping kinematics. However, analyses of significant interactions revealed greater peak flexion angles across the trunk and the trail limb joints (hip, knee and ankle) in unexpected versus expected stepdown conditions at a faster walking velocity. The −10-cm unexpected stepdown (main effect) had a greater influence on locomotor behavior compared to expected conditions due mainly to the absence of predictive adjustments, reflected by a significant decrease in peak knee flexion, contact time and vertical impulse during stance-phase. Walking faster (main effect) was associated with an increase in hip peak flexion and net anteroposterior impulse, and a decrease in contact time and vertical impulse during stepdown. The trail limb, in response, swung forward faster, generating a larger and faster recovery step. However, such reactive stepping following unexpected stepdown was yet a sparse compensation for an unstable body configuration, assessed by significantly smaller step width and anteroposterior margin-of-stability at foot-contact in the first-recovery-step compared with expected conditions. These findings depict the impact of the expectedness of stepdown onset on modulation of global dynamic postural control for a successful accommodation of (un)expected surface elevation changes in young, healthy adults.  相似文献   

18.
Understanding changes in lumbar spine (LS) angles and intervertebral disc (IVD) behavior in end-range positions in healthy subjects can provide a basis for developing more specific LS models and comparing people with spine pathology. The purposes of this study are to quantify 3D LS angles and changes in IVD characteristics with end-range positions in 3 planes of motion using upright MRI in healthy people, and to determine which intervertebral segments contribute most in each plane of movement. Thirteen people (average age = 24.4 years, range 18–51 years; 9 females; BMI = 22.4 ± 1.8 kg/m2) with no history of low back pain were scanned in an upright MRI in standing, sitting flexion, sitting axial rotation (left, right), prone on elbows, prone extension, and standing lateral bending (left, right). Global and local intervertebral LS angles were measured. Anterior-posterior length of the IVD and location of the nucleus pulposus was measured. For the sagittal plane, lower LS segments contribute most to change in position, and the location of the nucleus pulposus migrated from a more posterior position in sitting flexion to a more anterior position in end-range extension. For lateral bending, the upper LS contributes most to end-range positions. Small degrees of intervertebral rotation (1–2°) across all levels were observed for axial plane positions. There were no systematic changes in IVD characteristics for axial or coronal plane positions.  相似文献   

19.
In-vitro biomechanical testing is widely performed for characterizing the load-displacement characteristics of intact, injured, degenerated, and surgically repaired osteoligamentous spine specimens. Traditional specimen fixture devices offer an unspecified rigidity of fixation, while varying in the associated amounts and reversibility of damage to and “coverage” of a specimen – factors that can limit surgical access to structures of interest during testing as well as preclude the possibility of testing certain segments of a specimen. Therefore, the objective of this study was to develop a specimen fixture system for spine biomechanical testing that uses components of clinically available spinal fixation hardware and determine whether the new system provides sufficient rigidity for spine biomechanical testing. Custom testing blocks were mounted into a robotic testing system and the angular deflection of the upper fixture was measured indirectly using linear variable differential transformers. The fixture system had an overall stiffness 37.0, 16.7 and 13.3 times greater than a typical human functional spine unit for the flexion/extension, axial rotation and lateral bending directions respectively – sufficient rigidity for biomechanical testing. Fixture motion when mounted to a lumbar spine specimen revealed average motion of 0.6, 0.6, and 1.5° in each direction. This specimen fixture method causes only minimal damage to a specimen, permits testing of all levels of a specimen, and provides for surgical access during testing.  相似文献   

20.
The Coflex device may provide stability to the surgical segment in extension but does not restore stability in other motion. Recently, a modified version called the Coflex rivet has been developed. The effects of Coflex and Coflex rivet implantation on the adjacent segments are still not clear; therefore, the purpose of this study was to investigate the biomechanical differences between Coflex and Coflex rivet implantation by using finite element analyses. The results show that the Coflex implantation can provide stability in extension, lateral bending, and axial rotation at the surgical segment, and it had no influence at adjacent segments except for extension. The Coflex rivet implantation can provide stability in all motions and reduce disc annulus stress at the surgical segment. Therefore, the higher range of motion and stress induced by the Coflex rivet at both adjacent discs may result in adjacent segment degeneration in flexion and extension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号