首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bodnar RJ 《Peptides》2008,29(12):2292-2375
This paper is the thirtieth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2007 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.  相似文献   

2.
This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants).This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants).  相似文献   

3.
Bodnar RJ  Klein GE 《Peptides》2005,26(12):2629-2711
This paper is the 27th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over 30 years of research. It summarizes papers published during 2004 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.  相似文献   

4.
Bodnar RJ 《Peptides》2011,32(12):2522-2552
This paper is the thirty-third consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2010 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).  相似文献   

5.
《Peptides》2012,33(12):2522-2552
This paper is the thirty-third consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2010 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).  相似文献   

6.
This paper is the thirty-fifth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2012 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).  相似文献   

7.
This paper is the thirty-fourth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2011 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular–biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).  相似文献   

8.
Endogenous opiates and behavior: 2001   总被引:6,自引:0,他引:6  
Bodnar RJ  Hadjimarkou MM 《Peptides》2002,23(12):2307-2365
This paper is the twenty-fourth installment of the annual review of research concerning the opiate system. It summarizes papers published during 2001 that studied the behavioral effects of the opiate peptides and antagonists. The particular topics covered this year include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology(Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).  相似文献   

9.
Possible mechanisms of action of carbamazepine and diazepam on amygdala-kindled seizures were studied using compounds acting at the central and "peripheral-type" benzodiazepine binding sites. Ro-15-1788, a selective antagonist at the central benzodiazepine site, blocked the anticonvulsant effect of diazepam, but not of carbamazepine. In contrast, Ro5-4864, which acts at the "peripheral-type" benzodiazepine site, blocked the anticonvulsant effect of carbamazepine, but not of diazepam. The effect of Ro5-4864 was itself reversed by PK-11195, a compound that displaces Ro5-4864 binding in vitro and in vivo. These data indicate that the anticonvulsant effects of carbamazepine and diazepam on amygdala-kindled seizures are differentially mediated and suggest that the "peripheral-type" benzodiazepine binding site is functionally involved in the anticonvulsant effect of carbamazepine.  相似文献   

10.
Endogenous opiates and behavior: 2006   总被引:3,自引:0,他引:3  
Bodnar RJ 《Peptides》2007,28(12):2435-2513
This paper is the 29th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning 30 years of research. It summarizes papers published during 2006 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular–biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurological disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).  相似文献   

11.
Bodnar RJ  Klein GE 《Peptides》2004,25(12):2205-2256
This paper is the 26th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over a quarter-century of research. It summarizes papers published during 2003 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular–biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).  相似文献   

12.
Bodnar RJ  Klein GE 《Peptides》2006,27(12):3391-3478
This paper is the 28th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over a quarter-century of research. It summarizes papers published during 2005 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity, neurophysiology and transmitter release (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); immunological responses (Section 17).  相似文献   

13.
A major question in the biology of stress and environmental adaptation concerns the neurobiological basis of how neuroendocrine systems governing physiological regulatory mechanisms essential for life (metabolism, immune response, organ function) become harmful. The current view is that a switch from protection to damage occurs when vulnerable phenotypes are exposed to adverse environmental conditions. In accordance with this theory, sequelae of early life social and environmental stressors, such as childhood abuse, neglect, poverty, and poor nutrition, have been associated with the emergence of mental and physical illness (i.e., anxiety, mood disorders, poor impulse control, psychosis, and drug abuse) and an increased risk of common metabolic and cardiovascular diseases later in life. Evidence from animal and human studies investigating the associations between early life experiences (including parent‐infant bonding), hypothalamus‐pituitary‐adrenal axis activity, brain development, and health outcome provide important clues into the neurobiological mechanisms that mediate the contribution of stressful experiences to personality development and the manifestation of illness. This review summarizes our current molecular understanding of how early environment influences brain development in a manner that persists through life and highlights recent evidence from rodent studies suggesting that maternal care in the first week of postnatal life establishes diverse and stable phenotypes in the offspring through epigenetic modification of genes expressed in the brain that shape neuroendocrine and behavioral stress responsivity throughout life. Birth Defects Research (Part C) 87:314–326, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
We have formulated a pharmacological-physiological systems analysis and control theory based on interactive neuronal feedback loops (the effects of endogenous neurochemical diseases and exogenous CNS drugs on neurotransmitter synthesis and release, reuptake and metabolism) for normal, abnormal and catastrophic situations.We set up the systems diagrams for neurotransmitter systems and in that single framework were able to describe endogenous neurochemical disorders, the effect that their drug treatment modalities had on the dynamic neurochemical balance and the effect other CNS drugs such as narcotics and narcotic antagonists had on neurochemical balance. This led to a hypothesis that narcotic addiction is caused by negative feedback induced increase in synthesis and release of certain neurotransmitters, tolerance arises in a related manner, narcotic withdrawal symptoms are caused by out-of-phase feedback and a major mechanism of antagonist action of narcotic antagonists is not merely competitive displacement of a narcotic from its “receptor site” but rather is due to an increase in the concentration of catecholamines in the synaptic cleft.  相似文献   

15.
Bodnar RJ  Hadjimarkou MM 《Peptides》2003,24(8):1241-1302
This paper is the twenty-fifth consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over a quarter-century of research. It summarizes papers published during 2002 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).  相似文献   

16.
Opioid peptides, opioid receptors and mechanism of down regulation   总被引:1,自引:0,他引:1  
Biogenesis of various endogenous opioid peptides, anatomical distribution and the characteristics of multiple receptors with which they interact provides an opportunity for understanding the role of opioid systems and mechanism of opioid tolerance. Cellular and anatomical distribution of opioid receptor and their function is important for identification of neuronal systems and local network involved in initiation of drug action and subsequent development of adaptations resulting from repeated drug use. The details concerning discovery and progress in endogenous opioid peptide research and their distribution in brain have been described in this review. This review also describes opioid receptors, their distribution and mechanism of down regulation, which may be one of the causes for tolerance to opioids. Agonist induced down regulation and recent evidence for involvement of ubiquitin/proteasome system in this process has been discussed.  相似文献   

17.
Estradiol and progesterone induction of the LH surge in ovariectomized female rats requires concurrent activation of brain insulin-like growth factor 1 (IGF1) receptors. The present study determined whether brain IGF1 receptor signaling is required for estrous cyclicity in gonadally intact female rats. A selective IGF1 receptor antagonist (JB-1) or vehicle was continuously administered into the third ventricle by osmotic minipumps. Following surgical placement of the minipumps, all rats temporarily reduced food intake, lost weight, and suspended estrous cycles. Control rats resumed cycles within a few days and exhibited compensatory hyperphagia until they returned to presurgical body weight. Animals receiving JB-1 had severely delayed or absent estrous cycles, failed to show rebound feeding, and regained body weight more slowly. Vehicle-infused animals pair fed to JB-1-treated rats had even lower body weights but resumed estrous cycles sooner than those given drug alone. Chronic infusion of IGF1 alone had no effect on any of these parameters, but coinfusion of IGF1 with the antagonist completely reversed JB-1 effects on food intake and estrous cyclicity and partially reversed the effects on body weight. There were no significant differences in the expression of galanin-like peptide (Galp) or Kiss1 mRNA in the arcuate or periventricular hypothalamic area of control and JB-1-treated animals at a time point when food intake and estrous cycles were different between controls and JB-1-treated rats. These data suggest that brain IGF1 signaling is necessary for normal estrous cycles as well as compensatory hyperphagia and that IGF1 modulation of the reproductive axis is not secondary to reduced food intake.  相似文献   

18.
The conceptualization of drug addiction as a compulsive disorder with excessive drug intake and loss of control over intake requires motivational mechanisms. Opponent process as a motivational theory for the negative reinforcement of drug dependence has long required a neurobiological explanation. Key neurochemical elements involved in reward and stress within basal forebrain structures involving the ventral striatum and extended amygdala are hypothesized to be dysregulated in addiction to convey the opponent motivational processes that drive dependence. Specific neurochemical elements in these structures include not only decreases in reward neurotransmission such as dopamine and opioid peptides in the ventral striatum, but also recruitment of brain stress systems such as corticotropin-releasing factor (CRF), noradrenaline and dynorphin in the extended amygdala. Acute withdrawal from all major drugs of abuse produces increases in reward thresholds, anxiety-like responses and extracellular levels of CRF in the central nucleus of the amygdala. CRF receptor antagonists block excessive drug intake produced by dependence. A brain stress response system is hypothesized to be activated by acute excessive drug intake, to be sensitized during repeated withdrawal, to persist into protracted abstinence and to contribute to stress-induced relapse. The combination of loss of reward function and recruitment of brain stress systems provides a powerful neurochemical basis for the long hypothesized opponent motivational processes responsible for the negative reinforcement driving addiction.  相似文献   

19.
Endogenous opiates: 1985   总被引:4,自引:0,他引:4  
G A Olson  R D Olson  A J Kastin 《Peptides》1986,7(5):907-933
This paper is the eighth installment of our annual review of research involving the endogenous opiate peptides. It is restricted to the non-analgesic and behavioral studies of the opiate peptides published in 1985. The specific topics this year include stress, tolerance and dependence, eating, drinking and alcohol consumption, gastrointestinal and renal activity, mental illness, learning and memory, cardiovascular responses, respiration and thermoregulation, seizures and neurological disorders, activity, and some other selected topics.  相似文献   

20.
Pathogens that evolve resistance to drugs usually have reduced fitness. However, mutations that largely compensate for this reduction in fitness often arise. We investigate how these compensatory mutations affect population-wide resistance emergence as a function of drug treatment. Using a model of gonorrhea transmission dynamics, we obtain generally applicable, qualitative results that show how compensatory mutations lead to more likely and faster resistance emergence. We further show that resistance emergence depends on the level of drug use in a strongly nonlinear fashion. We also discuss what data need to be obtained to allow future quantitative predictions of resistance emergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号