首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1299篇
  免费   116篇
  国内免费   216篇
  2024年   6篇
  2023年   33篇
  2022年   40篇
  2021年   46篇
  2020年   36篇
  2019年   81篇
  2018年   47篇
  2017年   54篇
  2016年   51篇
  2015年   49篇
  2014年   61篇
  2013年   79篇
  2012年   38篇
  2011年   88篇
  2010年   58篇
  2009年   102篇
  2008年   98篇
  2007年   87篇
  2006年   75篇
  2005年   79篇
  2004年   46篇
  2003年   56篇
  2002年   22篇
  2001年   26篇
  2000年   34篇
  1999年   24篇
  1998年   25篇
  1997年   16篇
  1996年   7篇
  1995年   18篇
  1994年   11篇
  1993年   10篇
  1992年   10篇
  1990年   4篇
  1989年   3篇
  1988年   10篇
  1987年   6篇
  1986年   3篇
  1985年   9篇
  1984年   15篇
  1983年   7篇
  1982年   12篇
  1981年   10篇
  1980年   5篇
  1979年   5篇
  1978年   4篇
  1977年   7篇
  1976年   4篇
  1975年   6篇
  1973年   3篇
排序方式: 共有1631条查询结果,搜索用时 15 毫秒
1.
This study estimates the economic values of and the dominant contributors to five key ecosystem services of wetlands in Beijing, by using the wetland inventory data in 2014 and economic valuation methods. Results indicate that the 51,434 ha of wetlands in Beijing annually provide 2.07 billion m3 of flood regulation, 944.01 million m3 of water provision, 42,154 tons of chemical oxygen demand (COD) purification, 3.03 PJ of heat absorption, and 9587 ha of habitat. Their economic values are estimated to be 15.89 billion RMB, 1.19 billion RMB, 169 million RMB, 421 million RMB, and 1.08 billion RMB in 2014 (RMB: Chinese currency, US$1 = RMB 6.14), respectively. The total values of five key wetland ecosystem services reach 18.76 billion RMB. In addition, the reservoir and river wetlands in Miyun, Yanqing, Fangshan, Huairou, and Mentougou Districts contribute 78% of key ecosystem services, whereas the urban wetlands in Xicheng, Dongcheng, Haidian, Chaoyang, and Tongzhou Districts more conveniently serve densely local people, hence they should be given particular attentions. In this paper, we develop the valuation methods of wetland ecosystem services, and recommend diversified strategies, regulations, and programs to protect the remaining wetlands in Beijing. This work can also provide a reference for the valuating of wetland ecosystem services for other urban-rural areas.  相似文献   
2.
High altitude wetlands on the Tibetan Plateau have been shrinking due to anthropogenic disturbances and global climate change. However, the few studies that have been conducted on wetlands are inconclusive about the effect of soil moisture on seed banks and potential of seed banks in wetlands with different levels of soil moisture for regeneration of dried wetlands. We investigated seed banks and plant communities along a soil moisture gradient. A structural equation model was used to analyze the direct and indirect effects of soil moisture on seed banks, as well as the relationship between plant communities and seed banks. Although soil moisture had no direct effects on seed bank richness and density and indirect effects on seed banks through plant community, it had indirect effects on the seed bank through soil pH. Soil moisture also did not have direct effects on plant community richness, but it had indirect effects through soil pH. Plant community composition changed with soil moisture, but aboveground plant abundance and seed banks composition did not change. Low similarity exists between plant community and seed banks for all wetlands, and similarity decreased along the moisture gradient. The key factor determining plant community diversity was soil pH, while seed bank diversity was mainly affected by soil pH and plant community diversity with wetland drying. Although potential for regenerating the plant community from the seed bank decreased with an increase in soil moisture, drained wetlands still have enough residual seeds for successful restoration of species-rich alpine meadows.  相似文献   
3.
R. P. Novitzki 《Plant Ecology》1995,118(1-2):171-184
The U.S. Environmental Protection Agency (EPA) initiated the Environmental Monitoring and Assessment Program (EMAP) in 1988. The wetland component (EMAP-Wetlands) is designed to provide quantitative assessments of the current status and long-term trends in the ecological condition of wetland resources. EMAP-Wetlands will develop a wetland monitoring network and will identify and evaluate indicators that describe and quantify wetland condition. The EMAP-Wetlands network will represent a probability sample of the total wetland resource. The EMAP sample is based on a triangular grid of approximately 12,600 sample points in the conterminous U.S. The triangular grid adequately samples wetland resources that are common and uniformly distributed in a region, such as the prairie pothole wetlands of the Midwest. However, the design is flexible and allows the base grid density to be increased to adequately sample wetland resources, such as the coastal wetlands of the Gulf of Mexico, which are distributed linearly along the coast. The Gulf sample network required a 49-fold increase in base grid density. EMAP-Wetlands aggregates the 56 U.S. Fish and Wildlife Service's (FWS) National Wetland Inventory (NWI) categories (Cowardin et al. 1979) into 12 functionally similar groups (Leibowitz et al. 1991). Both the EMAP sample design and aggregated wetland classes are suitable for global inventory and assessment of wetlands.The research described in this report has been funded by the U.S. Environmental Protection Agency. This document has been prepared at the EPA Environmental Research Laboratory in Corvallis, OR, through contract No. 68-C8-0006 to Man Tech Environmental Technology, Inc. This paper has been subjected to the Agency's peer and administrative review and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.  相似文献   
4.
In the Okavango Delta 98–99% of the water from inflow and rainfall is lost to the atmosphere through evapotranspiration. As a consequence 94% of inflowing solutes are retained within the Delta landscape. This process might be expected to result in an entirely saline environment, but that is not the case: the surface waters have very low salinity, supporting a typical freshwater biota. It has been deduced that the numerous islands in the Delta (about 150,000 within an area of 13,500 km2) have been formed through evapotransporative concentration in the groundwater, of infiltrating solutes, followed by precipitation and volume increase. Evidence of this is the large amount of calcrete in island soils. These islands of 3–10 m thickness with clayey soils are underlain by fine Kalahari sand to a depth of 200–300 m, which also indicates that they are formed through surface processes. The infiltration rate of surface water from floodplains and streams into islands is very high, and is predominantly a lateral process that is unidirectional. Evapotranspiration in the riparian woodland zone cause the ground-waters in the central area of islands—with halophyte grasslands—to have very high salinities. By use of chloride as a conservative element the concentration factor between central island groundwater and surface water is calculated to be 500–1,000. This groundwater is depleted of calcium and magnesium supporting the early deductions that these elements have precipitated as calcrete. There is also a large depletion of silicate and potassium that probably have precipitated as well forming the clayey soils typical of the islands. The central island groundwater is dominated by sodium, bicarbonate and dissolved organic matter. The gradual increase of salinity here causes a periodic let off of this water through a density-driven process to deeper layers. This process together with island growth through precipitation of solutes are the two major sink processes of inflowing solutes and explains why the Okavango Delta is at present a freshwater system. The whole island complex is calculated to be 100,000–400,000 years old while some intensely studied islands may be younger: 80,000–240,000 years. The discrepancy is explained by a biassed selection of islands currently in flooded areas with better growth conditions. The uniqueness of the Okavango Delta and ideas for future research are discussed.  相似文献   
5.
6.
Juvenile and adolescent male chimpanzees sometimes threaten older, apparently stronger individuals such as mature females. I label the behavior harassment. Harassment comprises 25 behaviors, 14 of which are accompanied by the use of objects such as branches: Clubbing, flailing and throwing are the most common. Females respond to harassment with 10 behaviors, including scream, avoid, ignore, and retaliate. Females tend to respond to harassment by juvenile males by ignoring them. However, they are more likely to retaliate, scream or avoid in response to harassment by adolescent males. I propose the rank improvement hypothesis that harassment initiates the process of male domination of females, and compare the predictions derived from it with those of the exploratory aggression hypothesis. Males stopped harassing females significantly earlier when females ignored them versus when they did not ignore them. This is not consistent with the exploratory aggression hypothesis. Males harassed adult females significantly longer when females retaliated than when they did not, which is consistent with the rank improvement hypothesis. Although the observations are congruent with my hypothesis, we need more data to test it.  相似文献   
7.
Abstract: The dynamics of newly established elk (Cervus elaphus) populations can provide insights about maximum sustainable rates of reproduction, survival, and increase. However, data used to estimate rates of increase typically have been limited to counts and rarely have included complementary estimates of vital rates. Complexities of population dynamics cannot be understood without considering population processes as well as population states. We estimated pregnancy rates, survival rates, age ratios, and sex ratios for reintroduced elk at Theodore Roosevelt National Park, North Dakota, USA; combined vital rates in a population projection model; and compared model projections with observed elk numbers and population ratios. Pregnancy rates in January (early in the second trimester of pregnancy) averaged 54.1% (SE = 5.4%) for subadults and 91.0% (SE = 1.7%) for adults, and 91.6% of pregnancies resulted in recruitment at 8 months. Annual survival rates of adult females averaged 0.96 (95% CI = 0.94-0.98) with hunting included and 0.99 (95% CI = 0.97-0.99) with hunting excluded from calculations. Our fitted model explained 99.8% of past variation in population estimates and represents a useful new tool for short-term management planning. Although we found no evidence of temporal variation in vital rates, variation in population composition caused substantial variation in projected rates of increase (Λ = 1.20-1.36). Restoring documented hunter harvests and removals of elk by the National Park Service led to a potential rate of Λ = 1.26. Greater rates of increase substantiated elsewhere were within the expected range of chance variation, given our model and estimates of vital rates. Rates of increase realized by small elk populations are too variable to support inferences about habitat quality or density dependence.  相似文献   
8.
Tropical forests contain much of the world's biodiversity, yet their rate of decline is increasing. The strategy most frequently used to protect this biodiversity is to make parks and reserves. While there is a great deal of research on the effectiveness of parks for protecting biodiversity, there is little research on how well extractive reserves conserve biodiversity. Here, we evaluate the effectiveness of four forest reserves in western Uganda at maintaining populations of primates and compare census data from the reserves to data from the neighbouring well‐protected Kibale National Park. The relative abundance of the five most common primates in the park was approximately four times that of the forest reserves. In the forest reserves, evidence of new human encroachment was seen every 500 m, while in the park it was seen every 100,000 m. Two recommendations emerge from our research: (i) for forest reserves, such as those studied here, to have conservation value for primates, extraction must be reduced and (ii) until the long‐term viability of the populations in forest reserves can be ascertained, they should not be considered in estimates of the sizes of endangered species protected ranges.  相似文献   
9.
Despite a recent surge of interest in temporary lentic systems, a strong theory linking the biota to its environment has not emerged. Using data from 10 temporary ponds at Mammoth Cave National Park, Kentucky, USA, we investigated how invertebrate communities were structured along environmental gradients, both between and within ponds. Samples were collected with a benthic corer in winter and spring, and a sweep net in spring. Six between-pond and two within-pond datasets were created. Between-pond analyses yielded significant CCA’s with only one of the six data sets. The ranges of environmental variables (EV’s) within ponds were often similar to the ranges of EV’s when averaged and compared between ponds. Some taxa were aggregated in a single pond, and richness increased with pond area. The theory that richness increases with hydroperiod did not apply to these systems. Within-pond analyses yielded more consistent relationships, with both CCA’s being significant. Sample depth was the best predictor of invertebrate richness and abundance, with most taxa preferring shallow habitats. Richness and abundance were higher in both shallow ponds and shallow areas of deep ponds than in deep areas of deep ponds. Standardizing sample depth may be an effective way to remove this gradient as a confounding variable in future research. The presence of within-pond gradients, possibly coupled with the limited dispersal and random colonization of tolerant taxa, makes between-pond comparisons difficult. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorised users. Handling editor: S. Declerck  相似文献   
10.
Snow dominates the hydrology and climate of the United States’ central Pacific Coast, but because local measurements of snowpack and winter precipitation often extend back only a few decades, observations by themselves are not adequate to describe potential amplitude of wintertime conditions. Here we present a set of updated and extended mountain hemlock (Tsuga mertensiana [Bong.] Carr.) tree-ring width records from Crater Lake National Park, Oregon, and use these data to make inferences about snowpack prior to the start of instrumental monitoring. In July and August 2013, we collected cores from 228 trees at seven high-elevation hemlock stands that surround the crater’s rim. The oldest tree had an inner ring date of CE 1474, and the longest ring-width chronology maintained a satisfactory common signal back to the middle of the 16th century. The growth of high-elevation mountain hemlock is strongly and inversely related to cool-season precipitation, making these records some of the most southerly examples of a robust inverse cool-season moisture signal in North American tree rings. The growth of these snow-limited forests does not appear to have been affected by the substantial decline in spring snowpack observed in the past two decades across the broader Cascade Range, and we did not find any indication of changing relationships between tree growth and either monthly or seasonal winter precipitation since the early 1990s. The exceptional three-year sequence in Crater Lake tree rings between CE 1809 and 1811, which includes the narrowest ring since CE 1540 and anatomical abnormalities produced by cold weather, leads us to conclude that 1809–1810 was the most snowy and severe winter to affect south-central Oregon during the past four and a half centuries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号