首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   8篇
  国内免费   49篇
  2013年   1篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2006年   1篇
  2005年   4篇
  2004年   10篇
  2003年   10篇
  2002年   9篇
  2001年   12篇
  2000年   6篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1995年   1篇
  1994年   4篇
  1993年   5篇
  1992年   10篇
  1991年   2篇
  1990年   9篇
  1989年   3篇
  1988年   6篇
  1987年   6篇
  1986年   1篇
  1985年   1篇
  1984年   4篇
  1983年   7篇
  1982年   1篇
排序方式: 共有126条查询结果,搜索用时 15 毫秒
1.
夜间变暖提高荫香叶片的光合能力   总被引:3,自引:0,他引:3  
赵平  孙谷畴  蔡锡安  饶兴权  曾小平 《生态学报》2005,25(10):2703-2808
研究了不同氮供应的条件下夜间变暖对荫香叶片光合能力的影响。当植株生长在相同的日间温度(25℃),而夜间温度从18℃增至20℃时,叶片的光合速率增高(p<0.05)。高氮供应的植株,夜间变暖下其叶片光合速率较低氮供应的高,氮供应增高能促进夜间变暖提高叶片光合速率的效应。在低氮供给和夜间变暖下,植株叶片的光下呼吸和暗呼吸的增高显著(p<0.05)。无论在高氮或低氮供应下,生长在夜间变暖下的植物,其叶片的R ub isco最大羧化速率(Vcm ax)和光合电子传递最大速率(Jm ax)增高(p<0.05),氮供应能增强夜间变暖对Vcm ax和Jm ax的正向效应。夜间变暖降低植株叶片的比叶重,而增加单位叶干重的氮含量(Nm),单位叶面积的氮含量(Na)没发生明显变化。随着全球气候变化,夜间趋暖将有利于树木叶片光合能力的提高,结合高氮供给将会明显地增高植物的碳固定。  相似文献   
2.
过氧化氢和氯化钙对香蕉幼苗抗寒性的影响   总被引:15,自引:0,他引:15  
用H2O2和CaCl2单独或混合使用的方法喷洒香蕉幼苗,并置于低温培养箱中进行冷胁迫处理,发现它们可提高香蕉幼苗冷胁迫期间叶片POD活性,降低细胞质泄漏,增加可溶性糖含量及减缓叶绿素降解,从而减轻冷伤害程度。H2O2和CaCl2混合处理的效果优于单独处理,二者有协同效应。  相似文献   
3.
探讨了水杨酸(salicylic acid, SA)提高香蕉幼苗抗冷性的可能机理.在常温下(30/22 ℃)用不同浓度(0~3.5 mmol/L)的SA水溶液喷洒叶片1 d,置于7 ℃低温下冷胁迫3 d,随后于常温下恢复2 d后测定电解质泄漏率,结果表明:SA 0.3~0.9 mmol/L能显著提高香蕉幼苗的抗冷性,以0.5 mmol/L效果最佳.若把冷胁迫温度降到5 ℃,SA 0.5 mmol/L 预处理可显著减少幼苗叶片的萎蔫面积.但当SA浓度高于1.5 mmol/L时,恢复期间的电解质泄漏甚至高于对照(蒸馏水处理),表明它们加剧了冷害.SA提高香蕉幼苗的抗冷性可能需要H2O2的参与:1)SA 0.5 mmol/L常温处理诱导了H2O2的积累和活性氧造成的膜脂过氧化--三氯乙酸反应物质(TBARS)的增加,这可能与H2O2的清除酶--过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)活性的受抑和H2O2的产生酶-超氧化物歧化酶(SOD)活性几乎不受影响有关;2)外源H2O2(1.5~2.5 mmol/L)也能显著降低低温胁迫期间的电解质泄漏,表明也能提高抗冷性;3)而用H2O2的捕捉剂--二甲基硫脲(DMTU)可明显抑制SA诱导的抗冷性;4)在低温胁迫与恢复期间,SA预处理明显提高了CAT和APX的活性,抑制了H2O2与TBARS的快速上升.  相似文献   
4.
倍增CO2分压对水稻和矶子草冠层光合潜力的影响   总被引:3,自引:0,他引:3  
倍增CO2分压增高水稻的光饱和光合速率、表观量子产率和光能转换效率,而在倍增CO2分压下矶子草的相关光合参数降低,既水稻对高CO2分压表现为正响应,而矶子草在高CO2下光合作用下调。在倍增CO2分压下,水稻的Rubisco羧化速率和氧化速率均见增高,而矶子草在高CO2分压下,Rubisco羧化速率降低,而氧化速率略见增高。倍增CO2分压并不明显改变水稻的不包括光呼吸的CO2补偿点г^*,但矶子草г^*略见增高。在高CO2分压下可能改变矶子草Rubisco生化特性。倍增CO2分压降低两种供试植物的光下呼吸速率。水稻在倍增CO2分压下其Rubisco最大羧化速率(Vc max)和最大电子传递速率(Jmax)分别增高9.3%和20.7%,而矶子草在高CO2分压下则分别降低5.7%和3%。在倍增CO2分压下水稻的净光合量增高约5%,而矶子草则降低13%,植物种的不同特性可能影响植物在倍增CO2下的碳积累。随着全球气候变化和大气CO2,分压增高,将有利于发挥水稻高光合产率的优势,由于矶子草在高CO2分压下碳积累减少,从而可能限制其生长。大气CO2分压增高可能改变目前的水稻与杂草的生态关系而有利于控制杂草和改善田间耕作。  相似文献   
5.
研究结果表明,生长在77±5PaCO2分压下30d的荔枝幼树,其光合速率较大气CO2分压(39.3Pa)下的低23%,光下线粒体呼吸速率和不包含光下呼吸的CO2补偿点亦略有降低.空气CO2增高使叶片最大羧化速率(Vcmax)和最大电子传递速率(Jmax)降低,表明大气增高CO2分压下叶片的光系统I(PSI)能量水平较低,叶片超氧自由基产率亦降低39%,叶片感染荔枝霜疫霉病率则从生长在大气CO2分压下的1.8%增至9.5%.可能较低光合和呼吸代谢诱致较低的超氧自由基产率,而使叶片易受病害侵染.叶片受病害侵染后表现为超氧自由基的激增.在全球大气CO2分压增高趋势下须加强对荔枝霜疫霉病的控制.  相似文献   
6.
生长在高CC2浓度(700±56μl  相似文献   
7.
9月和12月测定了生长于3种不同光强(100%、36%和16%的自然光)下生长的乔木荷树、黧蒴和灌木九节、罗伞盆栽幼苗叶片的Rubisco羧化速率(RCR)、碳酸酐酶(CA)活性和细胞间CO2浓度(Ci)。当生长光强降低时,4种供试植物的RCR和CA活性明显降低。9月时生长在16%自然光下荷树的RCR和CA比100%自然光者分别降低55%和50%,藜蒴则降低20%和35%,耐有的灌木树的降幅较小,仅为33%-38%(RCR)和22%-30%(CA)。12月的RCR和CA的水平较9月时低,翌年1月时自然林不同光强下生长的同类植物的RCA和CA随光强变化也有类似的趋势。RCR和CA活性呈正相关性,且两者与Ci呈弱负相关。推测高光强可能有利于激活Rubisco,促进CA内化的CO2→DlC(可溶性碳)→CO2活性和DlC的传输过程。  相似文献   
8.
诱发因子如草酸,拮抗菌产生的抗素等,以及采后热处理,紫外线处理可以诱导水果产生抗病性,此外有的水果具有先天性抗病成分,对这些活性成分进行分析,并用之于水果采后病害的生物防治,为水果的防腐保鲜提供了新的方法,追踪这些抗病物质的产生和分布,需要采用一些专门的分析方法,目前采用的方法是将果实组织破碎,离心,通过萃取,层析或电泳技术进行纯化,然后用核磁共振,X-射线衍射及各种波谱分析技术进行结构鉴定,抗真菌物质的活性可以用薄层层层析生物学方法,孢子萌发或纸碟法进行鉴定,而抗真菌活性物质的定位则用组织化学法,电子显微术,放射自显著技术和免疫印迹技术也广泛用物于组织化学分析。  相似文献   
9.
UV-B辐射对香蕉光合作用和不同氮源利用的影响   总被引:14,自引:0,他引:14       下载免费PDF全文
生长在NO3^--N、NH4^--N和NH4NO3-N的香蕉叶片有相近似的最大光合速率,UV-B辐射引起生长在不同氮源的香蕉叶片光合速率、表现量子产率和光肥利用效率的降低。UV-B辐射使生长在不同氮源的植株叶面积干重和叶氮含是降低。生长在NH4^--N的植株Vcmax和Jmax均较生长在其它氮源的高。UV-B辐射引起生长在NH4^-N的植株Vcmax和Jmax降低较相同处理的NO3^--N和NH4NO3-N植株明显,表明生长在NH4^ -N的香蕉对UV-B辐射更加敏感。UV-B辐射改变植株的叶片的碳氢比和碳氮比。经过UV-B辐射处理的NH4^ -N生长植株的碳氮生长在NO3^--N和NH4NO3-N的低。UV-B辐射可能改变植株对不同氮源的吸收利用,从而引起碳氮代谢和酸碱调节的变化。UV-B辐射降低叶氮在Rubisco和生物力能学组分的分配系数,可能使这些组分合成减少,使叶片光调节的变化。UV-B辐射降低叶氮在Rubisco和生物力能学组分的分配系数,可能使这些组分合成减少,使叶片光合速率下降。结果表明,生长在不同氮源的香蕉植树对UV-B辐射有不同响应,NH4^ -N有利于主要光合参数增高,但其对UV-B辐射亦最为敏感。氮供应受限制或植株生长在中性盐如NH4NO3-N则对UV-B辐射不甚敏感。  相似文献   
10.
比较研究了在不同形式氮源下生长柚树叶片光合对高浓度 CO2 驯化过程中有关参数变化。植株生长在人工混成土壤中 ,分别浇灌含有 2 mmol L- 1N的 NO- 3 - N,NH+ 4 - N和 NH4 NO3- N溶液。空气 CO2 增高处理时向生长植株的开顶透明罩中通入 74.4Pa CO2 ,以空气 CO2 生长的植株为对照。利用 CI- 30 1 ( CID,Inc) CO2 气体交换系统测定叶片光合速率和通过光合作用相关响应曲线计算光合参数。结果表明 ,在 CO2分压倍增下 ,NO- 3 - N生长植株光饱和光合速率较大气 CO2 分压下的高。而生长在 NH+ 4 - N和 NH4 NO3- N的植株光合速率与大气 CO2 分压下的相近 ,表现对高 CO2 的驯化。在空气 CO2 倍增下无论供给何种形式氮源并不影响Γ* ,但可增高 Rd( P<0 .0 5 )。 CO2 分压倍增下供给 NO- 3 - N植株的 Vcmax和 Jmax较大气分压相应的植株高 ,而 NH+ 4 - N和 NH4 NO3- N植株则与大气 CO2分压的相应植株相似 ( P>0 .0 5 )。无论供给何种形式氮源 ,生长在空气 CO2 分压倍增下不改变叶片单位面积干重 ,叶绿素含量和叶片中氮在 Rubisco、生物能学组分和捕光色素复合体组分的分配系数 ;但能改变叶片中氮含量。植物对高 CO2 的驯化可能受到不同形式氮利用性的影响 ,在对高 CO2 驯化过程亦反映叶片中氮在不同光合功能组分  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号