首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   9篇
  国内免费   7篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   7篇
  2019年   2篇
  2018年   5篇
  2017年   5篇
  2016年   4篇
  2015年   5篇
  2014年   14篇
  2013年   11篇
  2012年   6篇
  2011年   4篇
  2010年   6篇
  2009年   4篇
  2008年   5篇
  2007年   5篇
  2006年   6篇
  2005年   7篇
  2004年   2篇
  2003年   1篇
  1999年   1篇
  1996年   2篇
排序方式: 共有109条查询结果,搜索用时 46 毫秒
91.
BACKGROUND: Chitosan has been shown to be a non-toxic and efficient vector for in vitro gene transfection and in vivo gene delivery through pulmonary and oral administrations. Recently, we have shown that chitosan/DNA nanoparticles could mediate high levels of gene expression following intrabiliary infusion 1. In this study, we have examined the possibility of using polyethylene glycol (PEG)-grafted chitosan/DNA complexes to deliver genes to the liver through bile duct and portal vein infusions. METHODS: PEG (Mw: 5 kDa) was grafted onto chitosan (Mw: 47 kDa, deacetylation degree: 94%) with grafting degrees of 3.6% and 9.6% (molar percentage of chitosan monosaccharide units grafted with PEG). The stability of chitosan-g-PEG/DNA complexes was studied by measuring the change in particle size and by agarose gel electrophoresis against bile or serum challenge. The influence of PEG grafting on gene transfection efficiency was evaluated in HepG2 cells using luciferase reporter gene. Chitosan and chitosan-g-PEG/DNA complexes were delivered to the liver through bile duct and portal vein infusions with a syringe pump. Gene expression in the liver and the distribution of gene expression in other organs were evaluated. The acute liver toxicity of chitosan and chitosan-g-PEG/DNA complexes was examined by measuring serum alanine aminotranferase (ALT) and aspartate aminotransferase (AST) activities as a function of time. RESULTS: Both chitosan and chitosan-g-PEG displayed comparable gene transfection efficiency in HepG2 cells. After challenge with serum and bile, chitosan-g-PEG/DNA complexes, especially those prepared with chitosan-g-PEG (GD = 9.6%), did not form large aggregates like chitosan/DNA complexes but remained stable for up to 30 min. In addition, chitosan-g-PEG prevented the degradation of DNA in the presence of serum and bile. On day 3 after bile duct infusion, chitosan-g-PEG (GD = 9.6%)/DNA complexes mediated three times higher gene expression in the liver than chitosan/DNA complexes and yielded background levels of gene expression in other organs. On day 1 following portal vein infusion, gene expression level induced by chitosan/DNA complexes was hardly detectable but chitosan-g-PEG (GD = 9.6%) mediated significant transgene expression. Interestingly, transgene expression by chitosan-g-PEG/DNA complexes in other organs after portal vein infusion increased with increasing grafting degree of PEG. The ALT and AST assays indicated that grafting of PEG to chitosan reduced the acute liver toxicity towards the complexes. CONCLUSION: This study demonstrated the potential of chitosan-g-PEG as a safe and more stable gene carrier to the liver.  相似文献   
92.
Covalent attachment of polyethylene glycol, PEGylation, has been shown to prolong the half-life and enhance the pharmacodynamics of therapeutic proteins. Current methods for PEGylation, which rely on chemical conjugation through reactive groups on amino acids, often generate isoforms in which PEG is attached at sites that interfere with bioactivity. Here, we present a novel strategy for site-directed PEGylation using glycosyltransferases to attach PEG to O-glycans. The process involves enzymatic GalNAc glycosylation at specific serine and threonine residues in proteins expressed without glycosylation in Escherichia coli, followed by enzymatic transfer of sialic acid conjugated with PEG to the introduced GalNAc residues. The strategy was applied to three therapeutic polypeptides, granulocyte colony stimulating factor (G-CSF), interferon-alpha2b (IFN-alpha2b), and granulocyte/macrophage colony stimulating factor (GM-CSF), which are currently in clinical use.  相似文献   
93.
This study is designed to evaluate whether the PEGylated conjugated linoleic acid (PCLA) as the pro-drug can have favorable stability, bioavailability, and anti-adipogenic activity in 3T3-L1 cells for anti-obesity when compared with conjugated linoleic acid (CLA) itself. The CLA was simply coupled to poly(ethylene glycol) (PEG) at the melting state without solvents or catalysts through ester linkages between the carboxylic group of CLA and the hydroxyl group of PEG. To confirm of PCLA as the pro-drug, CLA release from PCLA was investigated by using high-performance liquid chromatographic (HPLC), showing that CLA release from PCLA was almost 90% in a nearly continuous fashion over the next 75h. Apoptosis was promoted by both CLA- and PCLA-treatments with increasing concentrations. However, the level of cell apoptosis induced by PCLA was lower than that induced by CLA owing to the biocompatible and hydrophilic properties of PEG. Moreover, the PCLA decreased glycerol-3-phosphate dehydrogenase (GPDH) activity in 3T3-L1 cells by acting upon major adipocyte marker proteins such as PPARgamma2, C/EBPalpha, and aP2 modulators. Furthermore, either CLA or PCLA stimulated basal, but not isoproterenol-sensitive, lipolysis in our cell model, suggesting that both CLA and PCLA may stimulate lipolysis via hormone sensitive lipase (HSL)-independent mechanisms. These results suggest that the PCLA may prove to be a stable pro-drug to control the deposition of fat in the human body, and that the anti-adipogenic effect of the PCLA on 3T3-L1 cells will offer a challenging approach for anti-obesity.  相似文献   
94.
Yun Q  Chen T  Zhang G  Bi J  Ma G  Su Z 《Biotechnology letters》2005,27(3):213-217
A novel methoxypolyethylene glycol (mPEG) derivative, containing a reactive group of 1-methyl pyridinium toluene-4-sulfonate, was synthesized and characterized. The mPEG derivative was successfully conjugated with two proteins: recombinant human granulocyte-colony stimulating factor (rhG-CSF) and consensus interferon (C-IFN). Homogeneous mono-PEGylated proteins were obtained which were identified by high performance size-exclusion chromatography and MALDI-TOF mass spectrometry. The biological activities of the mono-PEGylated rhG-CSF and the mono-PEGylated C-IFN were maintained at 90% and 88%, respectively.Revisions requested/16 November 2004; Revisions received 12 November 2004/14 December 2004  相似文献   
95.
Cationic dendrimers are considered one of the best drug transporters in the body. However, in order to improve their biocompatibility, modification of them is required to reduce toxicity. In this way, many dendrimers may lose their original properties, for example, anticancer. To improve biocompatibility of dendrimers, it is possible to complex them with albumin, as is done very often in drug delivery. However, the interaction of dendrimers with albumin can lead to protein structure disruption or no complexation at all. Therefore, the investigation of the interaction between cationic poly-(propylene imine) dendrimers and polyethylene glycol (PEG)-albumin by fluorescence, circular dichroism, small angle X-ray scattering (SAXS), and transmission electron microscopy was carried out. Results show that cationic dendrimers bind to PEGylated albumin at PEG and albumin surfaces. The obtained results for 5k-PEG indicate a preferential binding of the dendrimers to PEG. For 20k-PEG binding of dendrimers to PEG and protein could induce a collapse of the PEG chain onto the protein surface. This opens up new possibilities to the use of PEGylated albumin as a platform to carry dendrimers without changing the albumin structure and improve the pharmacokinetic properties of dendrimers without further modification.  相似文献   
96.
Hemoglobin (Hb)‐based oxygen carriers (HBOCs) have been used as blood substitutes in surgery medicine and oxygen therapeutics for ischemic stroke. As a potent HBOC, the PEGylated Hb has received much attention for its oxygen delivery and plasma expanding ability. Two PEGylated Hbs, Euro‐Hb, and MP4 have been developed for clinical trials, using human adult hemoglobin (HbA) as the original substrate. However, HbA was obtained from outdated human blood and its quantity available from this source may not be sufficient for mass production of PEGylated HbA. In contrast, bovine Hb (bHb) has no quantity constraints for its ample resource. Thus, bHb is of potential to function as an alternative substrate to obtain a PEGylated bHb (bHb‐PEG). bHb‐PEG was prepared under the same reaction condition as HbA‐PEG, using maleimide chemistry. The structural, functional, solution and physiological properties of bHb‐PEG were determined and compared with those of HbA‐PEG. bHb‐PEG showed higher hydrodynamic volume, colloidal osmotic pressure, viscosity and P50 than HbA‐PEG. The high P50 of bHb can partially compensate the PEGylation‐induced perturbation in the R to T state transition of HbA. bHb‐PEG was non‐vasoactive and could efficiently recover the mean arterial pressure of mice suffering from hemorrhagic shock. Thus, bHb‐PEG is expected to function as a potent HBOC for its high oxygen delivery and strong plasma expanding ability. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:252–260, 2017  相似文献   
97.
为了延长重组睫状神经营养因子在体内的保留半衰期,基于CNTF中天然的游离半胱氨酸残基,在前期工作中采用聚乙二醇修饰和转铁蛋白偶联的两种方式对CNTF进行了改造。此后又采用常规分析手段对PEG20k-CNTF和Tf-PEG5k-CNTF进行对比表征。高效凝胶过滤和动态光散射分析结果显示两者拥有相近的表观分子体积。细胞试验结果显示两种耦合物的活性分别下降至未修饰CNTF的50.6%和65.8%。抗体CNTF抗体亲和力结果显示PEG20k修饰后亲合力下降至原蛋白的3.8%,转铁蛋白偶联后保留89.9%原蛋白亲合力。药代动力学结果显示PEG20k-CNTF和Tf-PEG5k-CNTF在SD大鼠血液中的保留半衰期分别为5.34±0.26和8.65±0.60小时,与未修饰rh CNTF相比延长了约21.4倍和34.6倍。药效学结果显示在每周两次每次1.0 mg/kg(rh CNTF等量)的给药频率和剂量下,PEG20k-CNTF比Tf-PEG5k-CNTF更显著地降低实验小鼠体重。  相似文献   
98.
The mechanisms behind protein PEGylation are complex and dictated by the structure of the protein reactant. Hence, it is difficult to design a reaction process which can produce the desired PEGylated form at high yield. Likewise, efficient purification processes following protein PEGylation must be constructed on an ad hoc basis for each product. The retention and binding mechanisms driving electrostatic interaction-based chromatography (ion-exchange chromatography) of PEGylated proteins (randomly PEGylated lysozyme and mono-PEGylated bovine serum albumin) were investigated, based on our previously developed model Chem. Eng. Technol. 2005, 28, 1387–1393. PEGylation of each protein resulted in a shift to a smaller elution volume compared to the unmodified molecule, but did not affect the number of binding sites appreciably. The shift of the retention volume of PEGylated proteins correlated with the calculated thickness of PEG layer around the protein molecule. Random PEGylation was carried out on a column (solid-phase PEGylation) and the PEGylated proteins were separated on the same column. Solid-phase PEGylation inhibited the production of multi-PEGylated forms and resulted in a relatively low yield of selective mono-PEGylated form. Pore diffusion may play an important role in solid-phase PEGylation. These results suggest the possibility of a reaction and purification process development based on the mechanistic model for PEGylated proteins on ion exchange chromatography.  相似文献   
99.
Light chain (AL) amyloidosis is a disease associated with significant morbidity and mortality arising from multi-organ injury induced by amyloidogenic light chain proteins (LC). There is no available treatment to reverse the toxicity of LC. We previously showed that chaperone glycoprotein clusterin (CLU) and nanoliposomes (NL), separately, restore human microvascular endothelial function impaired by LC. In this work, we aim to prepare PEGylated-nanoliposomal clusterin (NL-CLU) formulations that could allow combined benefit against LC while potentially enabling efficient delivery to microvascular tissue, and test efficacy on human arteriole endothelial function. NL-CLU was prepared by a conjugation reaction between the carboxylated surface of NL and the primary amines of the CLU protein. NL were made of phosphatidylcholine (PC), cholesterol (Chol) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy(polyethylene glycol)-2000] (DSPE-PEG 2000 carboxylic acid) at 70:25:5?mol%. The protective effect of NL-CLU was tested by measuring the dilation response to acetylcholine and papaverine in human adipose arterioles exposed to LC. LC treatment significantly reduced the dilation response to acetylcholine and papaverine; co-treatment of LC with PEGylated-nanoliposomal CLU or free CLU restored the dilator response. NL-CLU is a feasible and promising approach to reverse LC-induced endothelial damage.  相似文献   
100.
Although antigen-binding fragments (Fabs) of antibodies constitute established tracers for in vivo radiodiagnostics, their functionality is hampered by a very short circulation half-life. PASylation, the genetic fusion with a long, conformationally disordered amino acid chain comprising Pro, Ala and Ser, provides a convenient way to expand protein size and, consequently, retard renal filtration. Humanized αHER2 and αCD20 Fabs were systematically fused with 100 to 600 PAS residues and produced in E. coli. Cytofluorimetric titration analysis on tumor cell lines confirmed that antigen-binding activities of the parental antibodies were retained. The radio-iodinated PASylated Fabs were studied by positron emission tomography (PET) imaging and biodistribution analysis in mouse tumor xenograft models. While the unmodified αHER2 and αCD20 Fabs showed weak tumor uptake (0.8% and 0.2% ID/g, respectively; 24 h p.i.) tumor-associated radioactivity was boosted with increasing PAS length (up to 9 and 26-fold, respectively), approaching an optimum for Fab-PAS400. Remarkably, 6- and 5-fold higher tumor-to-blood ratios compared with the unmodified Fabs were measured in the biodistribution analysis (48 h p.i.) for αHER2 Fab-PAS100 and Fab-PAS200, respectively. These findings were confirmed by PET studies, showing high imaging contrast in line with tumor-to-blood ratios of 12.2 and 5.7 (24 h p.i.) for αHER2 Fab-PAS100 and Fab-PAS200. Even stronger tumor signals were obtained with the corresponding αCD20 Fabs, both in PET imaging and biodistribution analysis, with an uptake of 2.8% ID/g for Fab-PAS100 vs. 0.24% ID/g for the unmodified Fab. Hence, by engineering Fabs via PASylation, plasma half-life can be tailored to significantly improve tracer uptake and tumor contrast, thus optimally matching reagent/target interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号