首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   9篇
  国内免费   7篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   7篇
  2019年   2篇
  2018年   5篇
  2017年   5篇
  2016年   4篇
  2015年   5篇
  2014年   14篇
  2013年   11篇
  2012年   6篇
  2011年   4篇
  2010年   6篇
  2009年   4篇
  2008年   5篇
  2007年   5篇
  2006年   6篇
  2005年   7篇
  2004年   2篇
  2003年   1篇
  1999年   1篇
  1996年   2篇
排序方式: 共有109条查询结果,搜索用时 15 毫秒
71.
聚乙二醇(PEG)定点修饰蛋白药物是针对蛋白特定基团特定位点的修饰,相比于非定点随机修饰的特点是PEG修饰位点的单一与确定,避免了修饰异构体的干扰,能较好的保留药物体内外活性;修饰产物组成均一、性质稳定,便于质量控制,降低由修饰异构体引起的潜在的安全性风险,并很大程度上提高得率,降低成本。已有PEG定点修饰蛋白药物上市,还有部分处于临床试验阶段。本文综述了PEG定点修饰蛋白药物的技术研究与临床进展,包括PEG定点修饰剂、定点修饰方法、PEG定点修饰的上市和临床药物及面临的问题,并展望了PEG修饰技术未来的发展前景。  相似文献   
72.
73.
In this study, a combined optimization method was developed to optimize the N‐terminal site‐specific PEGylation of recombinant hirudin variant‐2 (HV2) with different molecular weight mPEG‐propionaldehyde (mPEG‐ALD), which is a multifactor‐influencing process. The HV2‐PEGylation with 5 kDa mPEG‐ALD was first chosen to screen significant factors and determine the locally optimized conditions for maximizing the yield of mono‐PEGylated product using combined statistical methods, including the Plackett–Burman design, steepest ascent path analysis, and central composition design for the response surface methodology (RSM). Under the locally optimized conditions, PEGylation kinetics of HV2 with 5, 10, and 20 kDa mPEG‐ALD were further investigated. The molar ratio of polyethylene glycol to HV2 and reaction time (the two most significant factors influencing the PEGylation efficiency) were globally optimized in a wide range using kinetic analysis. The data predicted by the combined optimization method using RSM and kinetic analysis were in good agreement with the corresponding experiment data. PEGylation site analysis revealed that almost 100% of the obtained mono‐PEGylated‐HV2 was modified at the N‐terminus of HV2. This study demonstrated that the developed method is a useful tool for the optimization of the N‐terminal site‐specific PEGylation process to obtain a homogeneous mono‐PEGylated protein with desirable yield.  相似文献   
74.
Proteins that are modified by chemical conjugation require at least two separate purification processes. First the bulk protein is purified, and then after chemical conjugation, a second purification process is required to obtain the modified protein. In an effort to develop new enabling technologies to integrate bioprocessing and protein modification, we describe the use of disulfide‐bridging conjugation to conduct PEGylation during protein refolding. Preliminary experiments using a PEG‐mono‐sulfone reagent with partially unfolded leptin and unfolded RNAse T1 indicated that the cysteine thiols underwent disulfide‐bridging conjugation to give the PEGylated proteins. Interferon‐β1b (IFN‐β1b) was then expressed in E.coli as inclusion bodies and found to undergo disulfide bridging‐conjugation during refolding. The PEG‐IFN‐β1b was isolated by ion‐exchange chromatography and displayed in vitro biological activity. In the absence of the PEGylation reagent, IFN‐β1b refolding was less efficient and yielded protein aggregates. No PEGylation was observed if the cysteines on IFN‐β1b were first modified with iodoacetamide prior to refolding. Our results demonstrate that the simultaneous refolding and disulfide bridging PEGylation of proteins could be a useful strategy in the development of affordable modified protein therapeutics.  相似文献   
75.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) regulates proliferation, differentiation, and function of hematopoietic progenitor cells. Aside from expansion of hematopoietic cells, GM-CSF has shown efficacy in other diseases, including Crohn's disease. While GM-CSF being clinically used in humans, the ability to perform mechanistic studies in murine models is difficult due to the limited availability and rapid clearance of murine GM-CSF in the peripheral blood. To address these issues, we efficiently expressed murine GM-CSF under the control of the AOX1 gene promoter in Pichia pastoris using the Mut(S) strain KM71H. We describe the unique conditions that are required for efficient production by high-density fermentation and purification of mGM-CSF protein. Recombinant mGM-CSF protein was purified by tangential flow ultrafiltration and preparative reverse phase chromatography. To address limited half life or rapid clearance in mice, recombinant murine GM-CSF was modified by lysine-directed polyethylene glycol conjugation (PEGylation). PEG-modified and unmodified proteins were characterized by amino terminus sequence analysis and matrix assisted laser desorption ionization time-of-flight mass spectrometry. Under the mild reaction conditions, the recombinant protein is efficiently modified by PEGylation on an average of 2-3 sites per molecule. In vivo treatment of mice with PEGylated mGM-CSF, but not the unmodified recombinant mGM-CSF, reproduces the potent colony stimulating effects of human GM-CSF in patients on myeloid progenitor populations, as assessed by FACs analysis. This simplified approach for the expression, purification, and modification of a biologically potent form of murine GM-CSF should facilitate the study of central mechanisms of action in murine disease models.  相似文献   
76.
Uterine proprotein convertase (PC) 6 is critical for embryo implantation in mice and women. It is also one of the PC family members that play a vital role in HIV infectivity. We hypothesized that inhibiting PC6 in the female reproductive tract (vagina, cervix and uterus), may protect women from both pregnancy and HIV infection. One key requirement to prove this concept in an animal model is a vaginally deliverable PC6 inhibitor. Nona-d-arginine (Poly R) is a potent peptide PC inhibitor and is able to inhibit HIV in cell culture. We modified Poly R by PEGylation with different strategies and determined their biochemical properties in vitro and in vivo. PEGylation at the C-terminus, regardless of the PEG size (30 kDa or 1239 Da) did not compromise the inhibitory potency of Poly R. In contrast, PEGylation at both termini (1239 Da) dramatically reduced its inhibitory activity. Poly R and C-PEGylated Poly Rs also showed equal potency in inhibiting a PC6-dependent cellular process critical for embryo implantation. Poly R and the equipotent C-PEGylated Poly Rs were further tested for their serum stability in vitro and pharmacokinetics in vivo following vaginal administration in mice. All Poly Rs were equally stable in mouse serum in vitro for 24 h; C-PEGylated Poly Rs showed enhanced vaginal absorption and penetration across the vaginal mucosa/epithelium. This is the first report that C-terminal PEGylation significantly enhances the therapeutic properties of Poly R for vaginal drug delivery. Our findings also provide important insights into future design of Poly R derivatives.  相似文献   
77.
生物制药的现状和未来(二):发展趋势与希望   总被引:13,自引:3,他引:10  
随着基因组和蛋白质组研究的深入,越来越多的与人类疾病发展相关的靶标被确定,使得我们能够研发更精确的药物来防治这些疾病。这意味着生物制药将有更多机会获得突破性进展,最终将使更多更好的生物技术药物被批准上市。综述了生物制药发展的几个趋势,主要有:(1)哺乳动物细胞表达的产品将在相当长的时间内占统治地位;(2)治疗性抗体将会是生物制药领域第二次创新高潮;(3)越来越多分子量大、结构复杂的功能蛋白将被开发成生物技术药物,尤其是用于治疗遗传性疾病的药物;(4)对已批准上市的生物技术药物的化学修饰尤其是PEG化以改善药物性能;(5)通过某些药物的定点突变获得第二代新生物技术药物,如胰岛素、EPO和t-PA的突变体;(6)组织工程、细胞治疗和基因治疗充满了机遇和挑战。  相似文献   
78.
  1. Download : Download high-res image (174KB)
  2. Download : Download full-size image
  相似文献   
79.
Therapeutic proteins alleviate disease pathology by supplementing missing or defective native proteins, sequestering superfluous proteins, or by acting through designed non-natural mechanisms. Although therapeutic proteins often have the same amino acid sequence as their native counterpart, their maturation paths from expression to the site of physiological activity are inherently different, and optimizing protein sequences for properties that 100s of millions of years of evolution did not need to address presents an opportunity to develop better biological treatments. Because therapeutic proteins are inherently non-natural entities, optimization for their desired function should be considered analogous to that of small molecule drug candidates, which are optimized through expansive combinatorial variation by the medicinal chemist. Here, we review recent successes and challenges of protein engineering for optimized therapeutic efficacy.  相似文献   
80.
Ceria nanoparticles (CNPs) have recently been shown to protect cells and animals from radiation-induced damage. However, most of the CNPs used in previous studies were either naked or weakly protected by surfactants, which inevitably encounter many obstacles in biological applications. Here, alendronate was used as an ideal anchor to graft polyethylene glycol (PEG) onto CNPs, leading to enhanced stability, reduced cytotoxicity, and improved biological properties. Further investigation assessed the protective ability of the nanoparticles against radiation-induced effects for human normal liver cells (L-02), indicating that the PEGylated CNPs (CNPs–AL–PEG) were more efficient than naked CNPs. We determined that enhanced Ce3+/Ce4+ ratios improved intracellular dispersion and that the ameliorated intracellular distribution of CNPs–AL–PEG contributes to the elevated expression of SOD2, which leads to increased protection of normal cells against ROS and reduces the oxidatively generated DNA damage. These studies hold tremendous promise for radioprotection and biological applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号