首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   65篇
  国内免费   373篇
  2024年   1篇
  2023年   15篇
  2022年   20篇
  2021年   16篇
  2020年   22篇
  2019年   15篇
  2018年   19篇
  2017年   19篇
  2016年   19篇
  2015年   27篇
  2014年   25篇
  2013年   31篇
  2012年   27篇
  2011年   17篇
  2010年   27篇
  2009年   30篇
  2008年   35篇
  2007年   30篇
  2006年   17篇
  2005年   17篇
  2004年   18篇
  2003年   6篇
  2002年   9篇
  2001年   8篇
  2000年   8篇
  1999年   3篇
  1998年   2篇
  1997年   9篇
  1996年   3篇
  1995年   6篇
  1994年   1篇
  1993年   2篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1958年   1篇
排序方式: 共有514条查询结果,搜索用时 15 毫秒
71.
若尔盖高原湿地甲烷排放的时空异质性   总被引:8,自引:0,他引:8  
集中于北美落基山高山湿地甲烷排放的零星报道远不能解析全球高山湿地甲烷源强. 因此,世界范围内其他区域高山湿地甲烷排放的研究对于合理估计全球高山湿地甲烷源强,意义重大.采用静态箱-气相色谱法,基于3种典型湿地类型的甲烷排放数据,认为若尔盖高原湿地生长季甲烷的平均排放量为4.69 mg CH4 m-2 h-1.同时根据2a数据,初步分析了甲烷通量及其对环境因素和生物因素的响应特征,结果表明:(1)甲烷排放昼夜变化具有双峰模式 (主峰出现在15:00,次峰出现在06:00),可由土壤温度以及植物气孔开启来解释.(2)若尔盖湿地甲烷排放季节动态较为典型,即在7月份或8月份出现排放高峰,冬季甲烷排放较少.生长季,对3类群落类型,表面温度与甲烷排放显著相关 (r2=0.55,P<0.05,n=30),地表水位和植物群落高度与甲烷排放相关性更为显著 (r2=0.32,0.61,P<0.01,n=30).分析认为该季节节律是由温度以及植物生长状况直接影响的,而水位则是使该节律发生波动的原因(高原气候).(3)群落尺度下,物候学上相当重要的两个时期,甲烷排放通量均有较高的空间变异 (植物生长高峰变异系数为38%,积雪融化高峰为61%).通过逐步回归线性分析,发现植物生长高峰期,地表水位和群落高度是影响甲烷排放空间差异的主要因素 (r2= 0.43,0.59,P<0.01,n=30).(4)景观尺度下,生长季,景观尺度下甲烷排放有较大的空间变异,湖滨湿地甲烷平排放量最高为11.95 mg CH4 m-2h-1,其次为宽谷湿地,其排放量为2 12 mg CH4 m-2h-1,河岸湿地表现为甲烷吸收,其吸收量为0.007 mg CH4 m-2h-1.地表水位、植物地上生物量以及植物高度能够很好地解释甲烷排放的景观差异.  相似文献   
72.
CH4在温室效应中起着重要作用,为估算中亚热带CH4的源汇现状,评价森林生态系统对温室效应的影响,采用静态箱-气相色谱法研究了千烟洲红壤丘陵区人工针叶林的土壤CH4 排放通量特征及水热因子对其的影响。对2004年9月~2005年12月期间的观测结果分析表明 :千烟洲人工针叶林土壤总体表现为大气CH4的吸收汇,原状林地土壤(Forest soil)情况下,CH4通量的变化为7.67~-67.17μg&#8226;m-2&#8226;h-1,平均为-15.53μg&#8226;m-2&#8226;h-1;无凋落物处理(Litter-free)情况下,CH4通量的变化是9.31~-90.36 μg&#8226;m-2&#8226;h-1,平均为-16.53μg&#8226;m-2&#8226;h-1。 二者对土壤CH4的吸收表现出明显的季节变化规律,秋>夏>冬>春,但无凋落物处理CH4变化幅度较原状林地土壤大,无凋落物处理吸收高峰出现在10月,最低值出现在翌年3月,原状林地土壤则分别在9月和翌年2月,均提前1个月。对土壤CH4吸收通量与温度和湿度的相关分析表明: 无论是原状林地土壤还是无凋落物处理情况下,土壤CH4通量都与地下5 cm的温度和湿度相关性最高。偏相关分析反映了不同季节水热配置对土壤吸收CH4通量的影响:冬季为12月~翌年2月,温度起主要作用;雨季3~6月,温度作用为主,随着温度的升高而升高,水分作用微弱;7~8月,CH4吸收通量随着湿度的降低而增加,但高温限制了CH4的吸收;秋季(9~11月)水热配置适宜,CH4通量达到高峰值。总之,CH4吸收通量随着温度的升高和 湿度的降低而增大,但温度过高会抑制其吸收。  相似文献   
73.
玉米农田水热通量动态与能量闭合分析   总被引:16,自引:0,他引:16       下载免费PDF全文
 基于锦州农田生态系统野外观测站玉米农田涡度相关系统近2年的水热通量观测数据,分析了玉米农田水热通量的日际、年际变化特征及其能量 平衡状况。结果表明: 1)玉米农田水热通量日变化与年变化均呈单峰型二次曲线,峰值出现在12∶00~13∶00左右,与净辐 射的日变化、年 变化同步,潜热通量最大可达到655 w&#8226;m-2(出现在2004年7月8日1 3∶00),显热通量最大值大约为369 w&#8226;m-2(出现在2004年5月31日13∶ 00)。2)玉米农田水热通量强度与局地的环境条件密切相关:显热通量与大气压的年变化呈负相关,潜热通量与气温年变化呈正相关。水热通 量受降水的影响较大,对降水的反应较敏感。其中,潜热通量(LE)不仅与降水的强度有关,而且随着降水的季节分布的不同而出现不同的响应 ,即使同样量级的降水在夜间与白天对LE的影响也是不同的。3)玉米农田通量观测呈现能量不闭合现象,主要原因可能是未包含0~5 cm土壤 热储量与冠层热储量,造成大约15.5%的能量损失。  相似文献   
74.
王乐  朱求安  张江  刘佳  朱超凡  瞿莉莎 《生态学报》2023,43(8):3103-3115
黄河流域横跨3个气候带,是全球人类活动最为强烈的地区之一,特殊的地理位置和复杂的下垫面导致其碳-水循环过程较为复杂。研究黄河流域碳水循环不仅是区域水资源利用的基础,也是实现气候变化条件下双碳目标的关键。水分利用效率(WUE)作为表征碳水过程的重要指标,可用于反映生态系统碳水耦合规律及其相互作用关系。基于此,利用全球陆表特征参量数据(GLASS)的净初级生产力(NPP)和蒸散(ET)产品以及中国逐年土地利用与覆盖数据集(CLUD-A),分析了黄河流域植被格局变化背景下WUE在1990—2018年的时空变化特征及其驱动力。结果表明:(1)黄河流域全域WUE在29 a的均值处在0.18—1.53 g C/kg H2O之间,存在明显的空间异质性,上游地区WUE明显高于中下游地区,分别在0.66—0.92 g C/kg H2O和0.43—0.62 g C/kg H2O之间波动,二者均存在波动上升态势。(2)黄河流域全域WUE在以2000年为中间点的10 a的增速达到近29 a的峰值,流域植被格局变化所带来的流域内NPP与ET变化速...  相似文献   
75.
吸收溶液中CaCl_2促进了大麦根K~+净吸收,Ca~(++)本身对H~+分泌无影响,Cl~-减少了H~+净分泌量。 含有~(86)Rb的大麦根在1m mol/L KCl溶液中发生~(86)Rb外流,在H_2O、1m mol/L NaCl或0.5 m mol/L CaCl_2中没有明显外流。VO_4~(3-)、NaN_3和4℃低温均可以减少根段在1m mol/L KCl溶液中的~(86)Rb外流量。Ca~(++)抑制K~+(~(86)Rb~+)的外流,EDTA加剧外流,Ca~(++)可以逆转EDTA的效应。 Ca~(++)抑制K~+(~(86)Rb)外流和促进K~+净吸收的趋势相吻合。K~+吸收的通量分析结果表明,Ca~(++)抑制K~+通过质膜的外流,促进K~+由细胞质向液泡中转运,而不影响K~+通过质膜的内流速率。  相似文献   
76.
应用封闭式箱法技术测定了玉米、大豆田中N2O和CH4全年的通量变化。指出N2O排放有明显的季节变化和明显的日变化。大量的N2O排放发生在作物生长季节中。在冰雪溶化期和收割作物后也有一定量的N2O从土壤中排放。此外,实验结果也指出,玉米和大豆田作为大气CH4源或汇的作用不明显。  相似文献   
77.
应用普适全国的计算太阳辐射、光合有效辐射和光量子通量模型,系统地研究了粤西的高要、封开和临近地区梧州的太阳辐射、光合有效辐射和光量子通量的年总量、月总量以及相应的年平均日总量和日平均日总量。结果表明,太阳辐射、光合有效辐射和光量子通量的年变化有相似的规律;而地区变化有以下特点:梧州和封开明显类似,而高要与上两地差异稍大。  相似文献   
78.
通过温室盆栽试验对水稻土CH4 排放的季节变化及冬作季节土地管理的影响进行了研究 .结果表明 ,冬作季节种植紫云英、淹水休闲及干燥休闲但泡水前施用稻草处理泡水后 3 0dCH4 排放量分别高达 13 3d观测期总排放量的 67.5 %、3 5 .5 %及 3 3 .3 % ,且在泡水后第 13天及水稻移栽后第 7、40、91天分别出现 4个CH4 排放高峰 ;而种植小麦和干燥休闲但冬作前施用稻草处理泡水后 5 5dCH4 排放量才占观测期总排放量的 6.74%和 0 .2 7% ,随后至水稻收获CH4 排放通量也不高 .冬作季节土地管理引起的水稻生长期土壤Eh季节变化的差异是造成CH4 排放通量季节变化差异的主要原因  相似文献   
79.
80.
池塘养殖环境中底质—水界面营养盐扩散通量的现场测定   总被引:3,自引:0,他引:3  
孙耀 《生态学报》1996,16(6):664-666
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号