首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   4篇
  国内免费   3篇
  2023年   2篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2011年   7篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   10篇
  2006年   6篇
  2005年   7篇
  2004年   4篇
  2003年   5篇
  2002年   12篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1993年   1篇
  1992年   5篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1986年   4篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1981年   5篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
排序方式: 共有126条查询结果,搜索用时 203 毫秒
71.
M. Bonzon  M. Hug  E. Wagner  H. Greppin 《Planta》1981,152(3):189-194
Changes in adenine nucleotides pool size levels have been investigated in spinach leaves (Spinacia oleracea. L. cv. Nobel) in order to characterize the transition from the vegetative to the reproductive development. The transient changes reported in this study are the earliest responses observed to date in leaves during photoperiodic induction. These results are discussed in relation to Prigogine's theory of systems far from equilibrium.Abbreviations AN adenine nucleotide(s) - MIT mimicked inductive treatment (inductive treatment on already induced plants)  相似文献   
72.
采用反相高效液相色谱法结合液-质联用技术对漆叶提取物进行分离,并对其中的漆酚类化合物进行定性分析。结果显示:液相色谱分离得到10个峰,经质谱分析并结合文献,鉴定其中9个峰为C15或C17的饱和、单烯、二烯、及三烯漆酚类物质。首次对漆叶中漆酚类化合物进行了高效液相色谱-质谱分离和定性分析,为漆叶的临床应用提供一定的理论依据。  相似文献   
73.
Mature leaves of Phaseolus vulgaris L. (red kidney bean), Xanthium strumarium L. (cocklebur), and Gossypium hirsutum L. (cotton) were used to study accumulation of abscisic acid (ABA) during water stress. The water status of individual, detached leaves was monitored while the leaves slowly wilted, and samples were cut from the leaves as they lost water. The leaf sections were incubated at their respecitive water contents to allow ABA to build up or not. At least 8 h were required for a new steady-state level of ABA to be established. The samples from any one leaf covered a range of known water potentials (), osmotic pressures (), and turgor pressures (p). The and p values were calculated from pressure-volume curves, using a pressure bomb to measure the water potentials. Decreasing water potential had little effect on ABA levels in leaves at high turgor. Sensitivity of the production of ABA to changes in progressively increased as turgor approached zero. At p=1 bar, ABA content averaged 4 times the level found in fully turgid samples. Below p=1 bar, ABA content increased sharply to as much as 40 times the level found in unstressed samples. ABA levels rose steeply at different water potentials for different leaves, according to the at which turgor became zero. These differences were caused by the different osmotic pressures of the leaves that were used; must cqual - for turgor to be zero. Leaves vary in , not only among species, but also between plants of one and the same species depending on the growing conditions. A difference of 6 bars (calculated at =0) was found between the osmotic pressures of leaves from two groups of G. hirsutum plants; one group had previously experienced periodic water stress, and the other group had never been stressed. When individual leaves were subsequently wilted, the leaves from stress-conditioned plants required a lower water potential in order to accumulate ABA than did leaves from previously unstressed plants. On the basis of these results we suggest that turgor is the critical parameter of plant water relations which controls ABA production in water-stressed leaves.Abbreviations ABA abscisic acid - me-ABA abscisic-acid methyl ester - leaf water potential - osmotic pressure - p volumeaveraged turgor - volumetric modulus of elasticity  相似文献   
74.
Summary Observations by light, transmission electron and scanning electron microscopy have shown that intercellular spaces (ICS) are formed schizogenously in expanding leaves ofPhaseolus vulgaris. ICS formation occurs in predictable positions at the junctions between three or more cells, and follows three phases of development. The first, initiation, phase occurs soon after cell division, and is marked by the formation of an electron-dense osmiophilic body, probably proteinaceous, at the end of the cell plate/middle lamella of the daughter cell wall and across the adjacent piece of the primary wall of the mother cell. This part of the mother cell wall is digested, involving cellulolysis. The second phase, of cell separation, is marked by the first appearance of the ICS. InPhaseolus primary leaves this phase begins about day 3 after sowing, at which time the leaf area is about 1 cm2. In the final enlargement phase, lysis of cell wall material continues in the region of the middle lamella, and mechanical tensions arising from the rapid expansion of the lamina lead to further separation of the mesophyll cells so that spaces enlarge and merge.  相似文献   
75.
Leaves of 26 grass, herb, shrub and tree species were collected from mesotrophic grasslands to assess natural variability in bulk, fatty acid and monosaccharide δ13C values under different grazing management (cattle- or deer-grazed) on three sample dates (May, July and October) such that interspecific and spatiotemporal variations in whole leaf tissues and compound-specific δ13C values could be determined. The total mean leaf bulk δ13C value for plants was −28.9‰ with a range of values spanning 7.5‰. Significant interspecific variation between bulk leaf δ13C values was only determined in October (P = <0.001) when δ13C values of the leaf tissues from both sites was on average 1.5‰ depleted compared to during July and May. Samples from May were significantly different between fields (P = 0.03) indicating an effect from deer- or cattle-grazing in young leaves. The average individual monosaccharide δ13C value was 0.8‰ higher compared with whole leaf tissues. Monosaccharides were the most abundant components of leaf biomass, i.e. arabinose, xylose, mannose, galactose and glucose, and therefore, fluctuations in their individual δ13C values had a major influence on bulk δ13C values. An average depletion of ca. 1‰ in the bulk δ13C values of leaves from the deer-grazed field compared to the cattle-grazed field could be explained by a general depletion of 1.1‰ in glucose δ13C values, as glucose constituted >50% total leaf monosaccharides. In October, δ13C values of all monosaccharides varied between species, with significant variation in δ13C values of mannose and glucose in July, and mannose in May. This provided an explanation for the noted variability in the tissue bulk δ13C values observed in October 1999. The fatty acids C16:0, C18:2 and C18:3 were highly abundant in all plant species. Fatty acid δ13C values were lower than those of bulk leaf tissues; average values of −37.4‰ (C16:0), −37.0‰ (C18:2) and −36.5‰ (C18:3) were determined. There was significant interspecific variation in the δ13C values of all individual fatty acids during October and July, but only for C18:2 in May (P = <0.05). This indicated that seasonal trends observed in the δ13C values of individual fatty acids were inherited from the isotopic composition of primary photosynthate. However, although wide diversity in δ13C values of grassland plants ascribed to grazing management, interspecific and spatiotemporal influences was revealed, significant trends (P = <0.0001) for fatty acid and monosaccharide δ13C values: δ13C16:0 < δ13C18:2 < δ13C18:3 and δ13Carabinose > δ13Cxylose > δ13Cglucose > δ13Cgalactose, respectively, previously described, appear consistent across a wide range of species at different times of the year in fields under different grazing regimes.  相似文献   
76.
The profile of lipophilic antioxidants in different vegetative parts (leaves, shoots, buds and berries) was studied in sea buckthorn (Hippophae rhamnoides L.) male and female plants collected in the end of spring. Five lipophilic compounds, i.e. three tocopherol homologues (α, β and γ), plastochromanol-8 and β-carotene, were identified in each vegetative part of male and female sea buckthorn plants at the following concentrations: 7.25–35.41, 0.21–2.43, 0.41–1.51, 0.19–1.79 and 4.43–24.57 mg/100 g dry weight basis. Additionally, significant amounts of α-tocotrienol (1.99 mg/100 g dry weight basis) were detected in buds. The α-tocopherol and β-carotene were predominant lipophilic antioxidants in each vegetative part, accounting for 78.3–97.0% of identified compounds. The greatest amounts of lipophilic antioxidants were found in leaves, especially of female plants. Nevertheless, apart from leaves, also shoots of plants of both sexes seem to be a good source of α-tocopherol and β-carotene.  相似文献   
77.
The composition of essential oils hydrodistilled from 19 samples of inflorescences and leaves of Achillea millefolium L. plants, which were transferred from 14 natural habitats in Lithuania to the field collection, is reported. Total content of oil was 0.15–0.55% in inflorescences and 0.06–0.19% (v/w) in leaves. In total 117 compounds were identified positively or tentatively. Data obtained clearly indicate the presence of a remarkable chemical polymorphism within the population of A. millefolium in Lithuania. The content of the major constituents in the oils from inflorescences varied in the following ranges: β-pinene, 0.33–62.29%; β-myrcene, 0.05–69.76%; α-phelandrene, 0.13–29.96%; 1,8-cineole, 2.30–21.57%; and chamazulene, 0.08–30.70%. According to the major components the essential oils' six chemotypes of A. millefolium were defined.  相似文献   
78.
使用石蜡切片法,对不同生境下的17种藓类植物的叶片进行了解剖观察和比较分析,结果表明不同种类的藓类植物在中肋导水主细胞的有无、厚壁细胞是否分化、中肋细胞层数及细胞密度、叶片细胞层数、叶表附属物、叶片细胞密度等方面存在显著差异。藓类植物叶的解剖结构具有生态适应意义,旱生环境下的藓类植物,叶片细胞胞壁具不同程度的增厚,有些藓类植物叶片具附属结构,藓类植物中肋的有无,反映了对水分吸收和运输方式的不同。例如,荫湿生环境下的羽枝青藓Brachythecium plumosum,其中肋细胞胞壁较薄,无导水主细胞和副细胞的分化,也没有厚壁细胞分化,能够在阴湿环境下吸收水分和养分;钝叶匍灯藓Plagiom niumrostratum具有与旱生藓类植物相似的中肋结构,叶片较厚,中肋具导水主细胞,中肋背面具厚壁细胞,这些特点使该种藓类植物能够分布于间隙性干旱胁迫的环境中;水灰藓Hygro-hypnum luridum叶片纤细柔弱,仅1层细胞,细胞胞壁薄,叶表无附属结构,中肋细胞层数少,无导水主细胞分化,也没有厚壁细胞,这些特点使得水灰藓能够生长在水生环境中;东亚小金发藓Pogonatum inflexum和波叶仙鹤藓Atrich umundulatum的叶腹面覆盖着栉片,东亚砂藓Racomitrium japonicum、大羽藓Thuidium cym-bifolium、福氏蓑藓Macromitrium ferriei、东亚短颈藓Diphyscium fulvifolium、扭口藓Barbula unguiculata和角齿藓Ceratodon purpureus的叶片表面有乳头状突起或疣状物,这些附属结构使它们能够适应于旱生的环境中。  相似文献   
79.
Liew LN  Shi J  Li Y 《Bioresource technology》2011,102(19):8828-8834
Previous studies have shown that alkali pretreatment prior to anaerobic digestion (AD) can increase the digestibility of lignocellulosic biomass and methane yield. In order to simplify the process and reduce the capital cost, simultaneous alkali treatment and anaerobic digestion was evaluated for methane production from fallen leaves. The highest methane yield of 82 L/kg volatile solids (VS) was obtained at NaOH loading of 3.5% and substrate-to-inoculum (S/I) ratio of 4.1. The greatest enhancement in methane yield was achieved at S/I ratio of 6.2 with NaOH loading of 3.5% which was 24-fold higher than that of the control (without NaOH addition). Reactors at S/I ratio of 8.2 resulted in failure of the AD process. In addition, increasing the total solid (TS) content from 20% to 26% reduced biogas yield by 35% at S/I ratio of 6.2 and NaOH loading of 3.5%. Cellulose and hemicellulose degradation and methane yields are highly related.  相似文献   
80.
Daylilies (Hemerocallis spp.) have been used as food and in traditional medicine for thousands of years in eastern Asia. The leaves of the plant are used in the treatment of inflammation and jaundice. In studies of the aqueous methanol extracts of fresh Hemerocallis fulva leaves, 1',2',3',4'-tetrahydro-5'-deoxy-pinnatanine (1), pinnatanine (2), roseoside (3), phlomuroside (4), lariciresinol (5), adenosine (6), quercetin 3-O-beta-D-glucoside (7), quercetin 3,7-O-beta-D-diglucopyranoside (8), quercetin 3-O-alpha-L-rhamnopyransol-(1-->6)-beta-D-glucopyranosol-7-O-beta-D-glucopyranoside (9), isorhamnetin-3-O-beta-D-6'-acetylglucopyranoside (10) and isorhamnetin-3-O-beta-D-6'-acetylgalactopyranoside (11) were isolated. All of these compounds were tested for their in vitro lipid peroxidation inhibitory activities. Compounds 3-5 and 7-11 were found to possess strong antioxidant properties, inhibiting lipid oxidation by 86.4, 72.7, 90.1, 79.7, 82.4, 89.3, 82.2, and 93.2%, respectively at 50 microg/mL. Compound 1 is novel and compounds 3-6 and 8-11 described here in are isolated for the first time from daylily leaves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号