首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1410篇
  免费   354篇
  国内免费   551篇
  2024年   2篇
  2023年   66篇
  2022年   65篇
  2021年   100篇
  2020年   104篇
  2019年   125篇
  2018年   115篇
  2017年   121篇
  2016年   85篇
  2015年   74篇
  2014年   103篇
  2013年   82篇
  2012年   65篇
  2011年   84篇
  2010年   78篇
  2009年   82篇
  2008年   98篇
  2007年   113篇
  2006年   83篇
  2005年   74篇
  2004年   79篇
  2003年   75篇
  2002年   50篇
  2001年   51篇
  2000年   38篇
  1999年   37篇
  1998年   40篇
  1997年   26篇
  1996年   25篇
  1995年   28篇
  1994年   25篇
  1993年   13篇
  1992年   20篇
  1991年   12篇
  1990年   18篇
  1989年   9篇
  1988年   10篇
  1987年   8篇
  1986年   1篇
  1985年   3篇
  1984年   8篇
  1983年   3篇
  1982年   8篇
  1981年   3篇
  1979年   1篇
  1978年   2篇
  1958年   3篇
排序方式: 共有2315条查询结果,搜索用时 78 毫秒
61.
Though the potential of plants to take up organic N (e.g., amino acids) is well established, the true significance of organic N acquisition to plant N nutrition has not yet been quantified under field conditions. Here we demonstrate that organic N contributes significantly to the annual N uptake of three dominant plant species (Kobresia humilis, Saussurea superba and Stipa aliena) of alpine meadows on the Tibet Plateau, China. This was achieved by using double-labelled (14C and 15N) algae as a source for slow and continuous release of amino acids, and tracing both labels in the above- and below-ground plant biomass. Four months after addition of algae, between 0.5% and 2.6% of 14C and 5% and 14% of 15N from added algae were recovered in the plants, which translate into an uptake of organic N between 0.3 mg N m−2 and 1.5 mg N m−2. The calculated contribution of organic N to total N uptake was estimated to range between 21% and 35% for K. humilis, and between 13% and 21% for S. aliena and S. superba, respectively, implying that organic N uptake by grassland plants is quantitatively significant under field conditions in the studied alpine meadows. This finding has important ecological implications with regard to competition for organic N between microorganisms and plant roots.  相似文献   
62.
Experiments addressing the role of plant species diversity for ecosystem functioning have recently proliferated. Most studies have focused on plant biomass responses. However, microbial processes involved in the production of N2O and the oxidation of atmospheric CH4 could potentially be affected via effects on N cycling, on soil diffusive properties (due to changes in water relations and root architecture) and by more direct interactions of plants with soil microbes. We studied ecosystem-level CH4 and N2O fluxes in experimental communities assembled from two pasture soils and from combinations of 1, 3, 6, 8 or 9 species typical for these pastures. The soils contrasted with respect to texture and fertility. N2O emissions decreased with diversity and increased in the presence of legumes. Soils were sinks for CH4 at all times; legume monocultures were a smaller sink for atmospheric CH4 than non-legume monocultures, but no effect of species richness per se was detected. However, both the exchange of CH4 and N2O strongly depended on plant community composition, and on the interaction of composition with soil type, indicating that the functional role of species and their interactions differed between soils. N2O fluxes were mainly driven by effects on soil nitrate and on nitrification while soil moisture had less of an effect. Soil microbial C and N and N mineralisation rates were not altered. The driver of the interactive soil type×plant community composition-effects was less clear. Because soil methanotrophs may take longer to respond to alterations of N cycling than the 1/2 year treatment in this study, we also tested species richness-effects in two separate 5-year field studies, but results were ambiguous, indicating complex interactions with soil disturbance. In conclusion, our study demonstrates that plant community composition can affect the soil trace gas balance, whereas plant species richness per se was less important; it also indicates a potential link between the botanical composition of plant communities and global warming.  相似文献   
63.
放牧对黄河低阶地盐化草场土壤水盐空间异质性的影响   总被引:8,自引:2,他引:6  
选定黄河低阶地地形大致相近的放牧草场与封育草场,按实地情况分别设置长770m(放牧)、370m(放牧)和240m(封育)3条样线,采用校正后的便携式WET Sensor以10m为间隔进行土壤水盐的分层(0~10cm,10~20cm)测定,并对其进行地统计学分析.结果表明:黄河低阶地盐化草场表层土壤水盐的变异系数和相关性高于下层,土壤水分的变异系数低于土壤盐分且层间的相关性较高;放牧使土壤水盐之间的相关程度增大,变异降低,且使土壤水分存在一定的冗余.所研究草场的土壤水盐表现为中等或强烈空间自相关,封育盐化草场水盐空间相关尺度的差异较小,而放牧草场则相反.持续放牧已经成为一种稳定影响盐化草场水盐空间分布的结构性因素,使盐化草场的水盐空间异质性减弱.盐生植物在草场内随机分布且不受放牧干扰,是封育盐化草场随机作用较强的最可能原因;而放牧草场内牲畜的啃食和践踏对盐生植物和土壤结构改变所形成的反馈作用大大降低了这些植物对水分特别是盐分的再分配,进而导致放牧草场水盐的含量趋于增大且分布格局趋于简单.  相似文献   
64.
姚青  朱红惠  王栋  李良秋 《生态学报》2006,26(7):2288-2293
AM真菌能够影响植物生态系统的群落结构.以亚热带草地生态系统为研究对象,调查了两块草地中优势种和从属种的菌根,并在盆栽试验中比较了优势种和从属种对AM真菌的土著菌种和外源菌种Glomus mosseae的生长反应、养分吸收.结果表明,两块草地各自的优势种藿香蓟和两耳草对土著菌种的菌根依赖性分别是41.5%和77.4%,远远高于从属种莎草和毛蓼(16.0%和7.9%);但是它们对Glomus mosseae的菌根依赖性有所变化,分别是79.6%、44.2%、74.1%和24.9%.这表明,土著菌种是优势种和从属种的形成机制之一,而外源菌种可能改变基于土著菌种而形成的植物群落结构.植株磷营养的分析结果表明,AM真菌对优势种和从属种生长的促进与对磷吸收的促进高度相关,表明AM真菌促进养分吸收是其影响植物群落结构的机制之一.  相似文献   
65.
滕星  王德利  张宝田 《生态学报》2006,26(3):762-767
通过受控实验,比较了雨天和非雨天放牧在采食方式、采食损失量、践踏折损率以及土壤含水量和容重的差异.得出雨天放牧条件下,羊草各种采食方式的比例降低,去顶量依旧随放牧压升高而增加,但与非雨天放牧不同的是不再占主要比例.羊草采食损失量与非雨天差异不大,对于适口性更高的植物,如芦苇和全叶马兰,雨天放牧时损失更高.绵羊在冷湿环境中活动明显减少,羊草的践踏折损率各放牧压下差异不大,但芦苇的折损率依旧表现为随放牧压增强而增加.放牧后土壤15cm的含水量都低于对照小区,表明绵羊践踏加速了土壤水分的蒸发.放牧后土壤容重与放牧前和非牧区差异显著,并且容重随放牧压增强而增加.  相似文献   
66.
虚拟草地生态系统的建立方法   总被引:2,自引:0,他引:2  
袁清  徐柱  王加亭 《生态学报》2006,26(3):768-772
通过分析草地生态系统的要素及其关系,将其抽象为多维的虚拟空间,综合应用草地生态学原理、地理信息系统技术、数据库技术、网络技术、软件技术以及JAVA语言,集成基础科学数据和动态信息,在国际互联网上构建了完全开放和共享的、具有10维空间的虚拟草地生态系统.系统实现了空间-属性的双向复合查询和分析、牧草信息检索等主要功能.结果表明,该虚拟系统包含信息量大、运行稳定,为业界提供了一个方便、快捷的信息查询和空间分析的共享平台.该系统是我国在互联网上第一个基于WebGIS技术的虚拟草地生态系统,为建设我国数字草原提供技术支持.  相似文献   
67.
In this study, we use classical and geostatistical methods to identify characteristics of some selected soil properties including soil particle size distribution, soil organic carbon, total nitrogen, pH and electrical conductivity and their spatial variation in a 5-year recovery degraded sandy grassland after two different grazing intensity disturbance: post-heavy-grazing restoration grassland (HGR) and post-moderately grazing restoration grassland (MGR), respectively, in Horqin steppe, Inner Mongolia, northern China. The objective was to examine effect of grazing intensity on spatial heterogeneity of soil properties. One hundred soil samples were taken from the soil layer 0–15 cm in depth of a grid of 10 m×10 m under each treatment. The results showed that soil fine fractions (very fine sand, 0.1–0.05 mm and silt + clay, <0.05 mm), soil organic carbon and total nitrogen concentrations were significant lower and their coefficients of variation significant higher under the HGR than under the MGR. Geostatistical analysis of soil heterogeneity revealed that soil particle size fractions, organic carbon and total nitrogen showed different degree of spatial dependence with exponential or spherical semivariograms on the scale measured under HGR and MGR. The spatial structured variance account for a large proportion of the sample variance in HGR plot ranging from 88% to 97% for soil particle fractions, organic C and total N, however, except for organic C (88.8%), the structured variance only account for 50% of the sample variance for soil particle fractions and total N in the MGR plot. The ranges of spatial autocorrelation for coarse-fine sand, very fine sand, silt + clay, organic C and total N were 13.7 m, 15.8 m, 15.2 m, 22.2 m and 21.9 m in HGR plot, respectively, and was smaller than in MGR plot with the corresponding distance of 350 m, 144.6 m, 45.7 m, 27.3 m and 30.3 m, respectively. This suggested that overgrazing resulted in an increase in soil heterogeneity. Soil organic C and total N were associated closely with soil particle fractions, and the kriging-interpolated maps showed that the spatial distribution of soil organic C and total N corresponded to the distribution patterns of soil particle fractions, indicating that high degree of spatial heterogeneity in soil properties was linked to the distribution of vegetative and bare sand patches. The results suggested that the degree of soil heterogeneity at field scale can be used as an index for indicating the extent of grassland desertification. Also, the changes in soil heterogeneity may in turn influence vegetative succession and restoration process of degraded sandy grassland ecosystem.  相似文献   
68.
To determine the effectiveness of rehabilitation on improving ecosystem functions, we examined net photosynthetic rate (P N), tree species composition, soil enzyme activities, and the microclimate (air and soil temperature, relative humidity) of an area on Mt. Makiling that has been rehabilitated and protected from fire for over 12 years. After it was last burned extensively in 1991, restoration was initiated by planting Acacia mangium and Acacia auriculiformis. We selected three areas to study in 2003. Two areas were rehabilitated with A. mangium and A. auriculiformis, and one was still dominated by Imperata cylindrica and Saccharum spontaneum. P N of A. mangium and A. auriculiformis showed significantly lower values than those of I. cylindrica and S. spontaneum. The Acacia plantations had more naturally regenerated tree species than the grassland. Additionally, more tree species appeared in the A. mangium plantation than in the A. auriculiformis plantation. Ficus spetica was present in all of the study sites. Dehydrogenase and phosphatase activities were significantly higher in soil under the Acacia plantations than under grassland. Grassland showed higher air temperature, relative humidity, and soil temperature as well as a larger variation per hour in these parameters compared to the Acacia plantations. The highest air temperature, relative humidity, and soil temperature were measured in April during the dry season. From the regression analysis, soil temperature was significantly correlated with air temperature. Hence plantations, as a rehabilitation activity for grassland, promote natural regeneration and stabilize the microclimate. This stabilization of the microclimate affects establishment and growth of naturally occurring tree species.  相似文献   
69.
Questions: For wetland plants, dispersal by wind is often overlooked because dispersal by water is generally assumed to be the key dispersal process. This literature review addresses the role of seed dispersal by wind in wetlands. Why is wind dispersal relevant in wetlands? Which seeds are dispersed by wind and how far? And how can our understanding of wind dispersal be applied to wetland conservation and restoration? Methods: Literature review. Results and conclusions: Wind is a widely available seed dispersal vector in wetlands and can transport many seeds over long distances. Unlike water, wind can transport seeds in all directions and is therefore important for dispersal to upstream wetlands and to wetlands not connected by surface water flows. Wind dispersal transports seeds to a wider range of sites than water, and therefore reaches more sites but with lower seed densities. Many wetland plant species have adaptations to facilitate wind dispersal. Dispersal distances increase with decreasing falling velocity of seeds, increasing seed release height and selective release mechanisms. Depending on the adaptations, seeds may be dispersed by wind over many km or only a few m. The frequency of long‐distance wind dispersal events depends on these adaptations, the number of produced seeds, the structure of the surrounding vegetation, and the frequency of occurrence of suitable weather conditions. Humans reduce the frequency of successful long‐distance wind dispersal events in wetlands through wetland loss and fragmentation (which reduce the number and quality of seeds) and eutrophication (which changes the structure of the vegetation so that seed release into the wind flow becomes more difficult). This is yet another reason to focus on wetland conservation and restoration measures at increased population sizes, prevention of eutrophication, and the restoration of sites at short distances from seed sources.  相似文献   
70.
Seminatural grasslands provide habitats for various species and are important for biodiversity conservation. The understanding of the diverse responses of species and traits to different grassland managenient methods is therefore urgently needed. We disentangled the role of grassland management (fertilization and irrigation), vegetation structure (biomass, sward height) and plant quality (protein and fiber content) for Orthoptera communities in lowland hay meadows in Germany. We found vegetation structure to be the most important environmental category in explaining community structure of Orthoptera (species richness, total individuals, fiinctional diversity and species composition). Intensively used meadows (fertilized, irrigated, high plant biomass) were characterized by assemblages with few species, low functional diversity, and low conservation value. Thereby, the relatively moderate fertilizer inputs in our study system of up to -75 kg N/ha/year reduced functional diversity of Orthoptera, while this negative effect of fertilization was not detectable when solely considering taxonomic aspects. We found strong support for a prominent role of plant quality in shaping Orthoptera communities and especially the trait composition. Our findings demonstrate the usefulness of considering both taxonomic and functional comp on ents (functio nal diversity) in biodiversity research and we suggest a stronger involvement of plant quality measures in Orthoptera studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号