首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1410篇
  免费   354篇
  国内免费   551篇
  2024年   2篇
  2023年   66篇
  2022年   65篇
  2021年   100篇
  2020年   104篇
  2019年   125篇
  2018年   115篇
  2017年   121篇
  2016年   85篇
  2015年   74篇
  2014年   103篇
  2013年   82篇
  2012年   65篇
  2011年   84篇
  2010年   78篇
  2009年   82篇
  2008年   98篇
  2007年   113篇
  2006年   83篇
  2005年   74篇
  2004年   79篇
  2003年   75篇
  2002年   50篇
  2001年   51篇
  2000年   38篇
  1999年   37篇
  1998年   40篇
  1997年   26篇
  1996年   25篇
  1995年   28篇
  1994年   25篇
  1993年   13篇
  1992年   20篇
  1991年   12篇
  1990年   18篇
  1989年   9篇
  1988年   10篇
  1987年   8篇
  1986年   1篇
  1985年   3篇
  1984年   8篇
  1983年   3篇
  1982年   8篇
  1981年   3篇
  1979年   1篇
  1978年   2篇
  1958年   3篇
排序方式: 共有2315条查询结果,搜索用时 140 毫秒
41.
The genetic diversity and structure of Pulsatilla cernua, a continental‐grassland relict, were investigated using variations in chloroplast DNA (cpDNA) and microsatellites of nuclear DNA. In the analyses of three cpDNA regions, 17 haplotypes were found in 24 populations of P. cernua from Japan, Korea, and Russia. Although the route and time of migration between the continent of Asia and Japan could not be well resolved, the cpDNA haplotype network suggests the existence of several ancient lineages in Japan and a recent secondary migration from Japan to the continent. Microsatellite analyses did not indicate genetic structure among the Japanese populations, indicating the existence of gene flow across the distribution area until recently. These results indicate that the present fragmentation of P. cernua in Japan may reflect a rapid, recent reduction from a previously large, continuous distribution.  相似文献   
42.
43.
Distribution models are increasingly being used to understand how landscape and climatic changes are affecting the processes driving spatial and temporal distributions of plants and animals. However, many modeling efforts ignore the dynamic processes that drive distributional patterns at different scales, which may result in misleading inference about the factors influencing species distributions. Current occupancy models allow estimation of occupancy at different scales and, separately, estimation of immigration and emigration. However, joint estimation of local extinction, colonization, and occupancy within a multi‐scale model is currently unpublished. We extended multi‐scale models to account for the dynamic processes governing species distributions, while concurrently modeling local‐scale availability. We fit the model to data for lark buntings and chestnut‐collared longspurs in the Great Plains, USA, collected under the Integrated Monitoring in Bird Conservation Regions program. We investigate how the amount of grassland and shrubland and annual vegetation conditions affect bird occupancy dynamics and local vegetation structure affects fine‐scale occupancy. Buntings were prevalent and longspurs rare in our study area, but both species were locally prevalent when present. Buntings colonized sites with preferred habitat configurations, longspurs colonized a wider range of landscape conditions, and site persistence of both was higher at sites with greener vegetation. Turnover rates were high for both species, quantifying the nomadic behavior of the species. Our model allows researchers to jointly investigate temporal dynamics of species distributions and hierarchical habitat use. Our results indicate that grassland birds respond to different covariates at landscape and local scales suggesting different conservation goals at each scale. High turnover rates of these species highlight the need to account for the dynamics of nomadic species, and our model can help inform how to coordinate management efforts to provide appropriate habitat configurations at the landscape scale and provide habitat targets for local managers.  相似文献   
44.
Understanding how grazing activity drives plant community structure or the distribution of specific species in a community remains a major challenge in community ecology. The patchiness or spatial aggregation of specific species can be quantified by analyzing their relative coordinates in the community. Using variance and geostatistical analysis methods, we examined the quantitative characteristics and spatial distribution of Stipa breviflora in a desert steppe in northern China under four different grazing intensities (no grazing, NG, light grazing, LG, moderate grazing, MG, and heavy grazing, HG) at three small spatial scales (10 × 10 cm, 20 × 20 cm, 25 × 25 cm). We found that grazing significantly increased cover, density, and proportion in standing crop of Sbreviflora, but decreased height. The spatial distribution of S. breviflora was strongly dependent upon the sampling unit and grazing intensity. The patchiness of S. breviflora reduced with sampling scale, and spatial distribution of S. breviflora was mainly determined by structural factors. The intact clusters of S. breviflora were more fragmented with increasing grazing intensity and offspring clusters spread out from the center of the parent plant. These findings suggest that spatial aggregation can enhance the ability of S. breviflora to tolerate grazing and that smaller isolated clusters are beneficial to the survival of this dominant species under heavy grazing.  相似文献   
45.
The Conservation Reserve Program (CRP) is a primary tool for restoring grassland in the United States, in part as wildlife habitat, which has benefited declining grassland bird populations. Among potential mid-contract management practices used to maintain early-successional CRP grasslands, cattle grazing had been prohibited and is currently disincentivized during the primary nesting season for birds (much of the growing season), despite the important role that large herbivores historically played in structuring grassland ecosystems. Conservative grazing of CRP grasslands could increase spatial heterogeneity in vegetation structure and plant diversity, potentially supporting higher densities of some grassland bird species and higher bird diversity. Our objective was to determine the effect of experimental cattle grazing on species-specific relative abundance and occupancy, species diversity, and community dissimilarity of grassland birds on CRP grasslands across the longitudinal extent of Kansas, USA (a 63.5-cm precipitation gradient) during the 2017–2019 avian breeding seasons. Fifty-three of 108 fields were grazed by cattle during the growing seasons of 2017 and 2018 and all fields were rested from grazing in 2019. For all analyses, we examined separate model sets for semiarid western versus more mesic eastern Kansas. Using data from line transect surveys, we modeled relative abundances of 5 songbird species: grasshopper sparrow (Ammodramus savannarum), dickcissel (Spiza americana), eastern meadowlark (Sturnella magna), western meadowlark (Sturnella neglecta), and brown-headed cowbird (Molothrus ater). Grazing had delayed yet positive effects on abundances of grasshopper sparrow in western Kansas, and eastern meadowlark in eastern Kansas, but negative effects on dickcissel abundance in western Kansas and especially on burned fields in eastern Kansas. Somewhat counterintuitively, brown-headed cowbirds in western Kansas were more abundant on ungrazed versus grazed fields in the years after grazing began. In addition, we modeled multi-season occupancy of 3 gamebird species (ring-necked pheasant [Phasianus colcicus], northern bobwhite [Colinus virginianus], mourning dove [Zenaida macroura]) and Henslow's sparrow (Centronyx henslowii); grazing did not affect occupancy of these species. In eastern Kansas, species diversity was highest in grazed, unburned fields. In western Kansas, bird communities in grazed and ungrazed fields were dissimilar, as determined from multivariate analysis. Though regionally variable, conservative stocking of cattle on CRP grasslands during the nesting season as a mid-contract management tool might increase bird species diversity by restructuring habitat that accommodates a greater variety of species and decreasing abundances of species associated with taller, denser stands of vegetation.  相似文献   
46.
Overwintering is a key demographic stage for migratory birds but remains poorly understood, especially among multiple declining grassland bird species. The non-breeding ranges all 4 species of longspur (i.e., chestnut-collared [Calcarius ornatus], Smith's [C. pictus], Lapland [C. lapponicus], thick-billed [Rhynchophanes mccownii]) overlap in Oklahoma and the Texas Panhandle, USA, making this region ideal to study their wintering ecology. We evaluated the relationship between wintering longspur occurrence and fine-scale habitat characteristics using a combination of standardized bird surveys and vegetation plot sampling. Our study encompassed large, representative tracts of 3 prairie ecosystems (i.e., shortgrass, mixed-grass, and tallgrass prairies) that intersect within the Southern Great Plains, during winters of 2018–2019 and 2019–2020. Using randomization tests and classification trees, we characterized longspur habitats and compared these associations across the 3 prairie ecosystems. Fine-scale winter habitats (horizontal structure, vertical structure, and species compositions) varied among all 4 longspur species, varied at very fine scales, and differed between grassland types. Our findings can be applied to the management of grasslands such as decreasing vegetation height in mixed-grass prairies for chestnut-collared longspurs or removing woody vegetation in shortgrass prairies for thick-billed longspurs to help develop full-life cycle conservation for longspurs, which have experienced population declines.  相似文献   
47.
土壤水分作为土壤-植被-大气连续体的关键因子,对沙化草地的演化过程具有重要作用。为探讨宁夏东部风沙区沙化草地土壤水分、物种丰富度指数及植被盖度的空间变异及其相互关系,以哈巴湖自然保护区沙化草地为对象,采用样线法自潜在沙化草地至重度沙化草地进行植被调查和土壤取样,通过经典统计学和地统计学分析,得出以下结果:0—100 m各土层土壤水分含量、植被盖度和物种丰富度指数的分布范围分别为0.82%—28.22%、41.00%—93.00%和0.82—2.80,变异系数范围为0.20—0.48,均属于中等变异。各土层土壤水分和物种丰富度指数表现为中等的空间自相关性,植被盖度则表现为强烈的空间自相关性。Kriging插值结果表明,0—100 cm各土层土壤水分和植被盖度的空间插值图呈条带状和斑块状的梯度变化,物种丰富度呈斑块分布,自潜在沙化草地至重度沙化草地,表现为逐渐降低的趋势。相关分析表明,植被盖度与0—40 cm各土层土壤水分呈显著正相关,与40—100 cm各土层土壤水分呈极显著正相关。宁夏东部风沙区沙化草地土壤水分含量总体较低,由于结构因素和随机因素的共同作用,随草地沙化程度的加重,表现为...  相似文献   
48.
魏雪  李雨  吴鹏飞 《生态学报》2022,42(3):1071-1087
为缓解草蓄矛盾,青藏高原人工草地得到快速发展。土壤线虫对环境变化敏感,是草地生态系统的重要组成部分。然而,不同牧草人工草地对土壤线虫群落的影响尚不明确。2016年7月,对多年生禾本科(垂穗披碱草Elymus nutans Griseb.、老芒麦Elymus sibiricus L.、早熟禾Poa annua L.和羊茅Festuca ovina L.)、一年生禾本科燕麦Avena sativa L.和多年生豆科紫花苜蓿Medicago sativa L.等6种单播牧草人工草地(建植期4年)和天然草地(对照)的土壤线虫群落进行了调查。结果表明:(1)土壤线虫隶属于2纲8目32科58属,平均密度为1754个/100 g干土;紫花苜蓿样地的线虫密度最低,为949个/100 g干土;燕麦样地最高,为3267个/100 g干土;(2)与天然草地相比,燕麦样地的线虫群落总密度、多样性以及植食性和杂食-捕食性线虫密度显著增加,而其他人工草地的线虫群落密度、多样性以及植食性、食真菌和食细菌线虫密度均无显著变化;(3)土壤线虫总密度以及各营养类群密度在不同人工草地间差异显著,且均在燕麦样地最高;(4)建...  相似文献   
49.
降水-生产力的空间关系是否稳定不变? 降水是全球陆地生态系统中植被生长和净初级生产力的主要驱动因素。因此,探究降水和生产力关系有助于深入了解气候变化如何改变生态系统功能。降水-生产力的空间关系在全球不同草地上非常相似,但在连续多年气候异常的情况下,这种关系是否会发生变化以及如何变化尚不清楚。本研究利用 利用中国北方温带草地长达10年低于多年平均降水的时期,基于遥感植被指数数据,量化了区域尺度上降水-植被生产力关系在持续多年的干湿期之间将如何变化。结果表明,在连续10年的干期,降水-生产力空间相关性急剧下降,而该空间关系的下降主要是由于不同草原类型对干旱的响应在空间上存在高度的异质性,即不同生态系统对干旱的响应程度存在差异。因此,如果未来气候变化进一步加剧全球草地的干旱,那么基于历史时期(平水期)得到的降水-生产力空间关系推测区域尺度植被生产力可能导致误差。  相似文献   
50.
Semi-natural lowland and mountain mesic meadows are grasslands rich in species, and their conservation status depends on treatments such as mowing or grazing livestock. In many countries, the condition of grasslands is deteriorating because of their inappropriate use or abandonment. This study aimed to determine the effects of the species composition of plant communities and functional plant groups on the methane yield from biomass harvested from mesic grasslands in the Sudetes Mountains. Biogas potential analysis was performed based on biomass samples collected from Poland and the Czech Republic. The biogas potential was determined in 40 day-long batch anaerobic digestion tests. The average methane yield obtained from the biomass was 246 ± 16 NL CH4 kg?1 VS, whereas the methane yield per hectare was 870 ± 203 m3 CH4 ha?1. Plant communities comprising different dominant species had no effect on the methane yield but affected the methane yield per hectare. Additionally, the species composition of grasslands with a higher percentage of forbs had lower biomass yield, resulting in lower methane yields per hectare. The continuity of the low-intensity management of mountain grassland, which can be provided by the utilization of their biomass for bioenergy production, sustains high biodiversity and ensures appropriate meadow conservation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号