首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   10篇
  国内免费   24篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   4篇
  2017年   1篇
  2016年   5篇
  2015年   5篇
  2014年   14篇
  2013年   12篇
  2012年   12篇
  2011年   18篇
  2010年   7篇
  2009年   9篇
  2008年   16篇
  2007年   11篇
  2006年   14篇
  2005年   18篇
  2004年   21篇
  2003年   15篇
  2002年   6篇
  2001年   9篇
  2000年   5篇
  1999年   3篇
  1998年   1篇
  1997年   5篇
  1996年   2篇
  1994年   2篇
排序方式: 共有221条查询结果,搜索用时 20 毫秒
41.
干旱胁迫对杨树光合生理指标的影响   总被引:29,自引:1,他引:28  
采用PEG模拟干旱胁迫的方法,利用气体交换法和叶绿素荧光技术,研究了干旱胁迫下小青杨(Populus pseudo-simonii)的光合生理变化.结果表明,干旱胁迫初期,小青杨的净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(gs)和胞间CO2浓度(Ci)值均随干旱胁迫增强而下降,杨树Pn的下降主要是由于gs下降引起的;干旱胁迫后期,Ci值逐渐升高,非气孔限制成为光合作用的主要限制因子.干旱胁迫后期,PSⅡ原初光能转化效率(Fv/Fm)和PSⅡ潜在活性(Fv/Fo)明显下降,光抑制增强,光合电子传递受阻.POD酶的活性在胁迫初期升高,后期降低,说明干旱胁迫初期对保护系统酶活性升高有诱导作用,随着胁迫时间的延长,Fv/Fm和Fv/Fo降低,活性氧清除酶活性下降,活性氧代谢的平衡被打破,导致光合器官的伤害.由此表明,干旱胁迫后期Pn的降低与PSⅡ荧光参数及POD酶活性下降有关.  相似文献   
42.
磁场对羊草过氧化物酶的激活效应及同工酶分析   总被引:17,自引:0,他引:17  
利用外磁场处理羊草种子,并将羊草进行盐(NaCl)碱(Na2CO3)混合胁迫处理,结果表明,磁场处理不仅促进了羊草的生长,而且提高了羊草的抗盐碱性。磁场使羊草过氧化物酶(POD)活性提高,并且诱发了一条新的同工酶带。根据羊草的长势及POD活性分析,确定羊草最佳的磁处理参数是300mT处理,其次是200mT。  相似文献   
43.
杂交水稻金优63幼苗期SOD和POD特性研究   总被引:3,自引:0,他引:3  
对杂交水稻金优63幼苗不同时期的根、茎、叶进行SOD同工酶电泳分析,并测定SOD、POD活性。结果表明,自播种后第7天到第13天,幼苗的SOD同工酶在根、茎、叶中有明显的器官特异性,且SOD活性叶 >茎 >根。相同器官不同时期的SOD同工酶电泳谱带条数及SOD活性都有变化,且SOD活性强弱与SOD同工酶电泳谱带中有无Mn-SOD同工酶带有一定的关系。幼苗的POD活性在根、茎、叶中也有明显的器官特异性,茎中POD活性明显高于根和叶,且POD活性变化与SOD活性变化有一定的关系。  相似文献   
44.
Foxtail millet (Pennisetum glaucum L.) is a vital crop that is planted as food and fodder crop around the globe. There is only limited information is present for abiotic stresses on the physiological responses to atrazine. A field experiment was conducted to investigate the effects of different atrazine dosages on the growth, fluorescence and physiological parameters i.e., malonaldehyde (MDA) and reactive oxygen species (ROS) (H2O2 and O2) in the leaves to know the extent of atrazine on oxidative damage of foxtail millet. Our experiment consisted of 0, 2.5, 12.5, 22.5 and 32.5 (mg/kg) of labeled atrazine doses on 2 foxtaill millet varieties. High doses of atrazine significantly enhanced ROS and MDA synthesis in the plant leaves. Enzymes activities like ascorbate peroxidase (APX) and peroxidase (POD) activities enhanced, while catalase (CAD) and superoxide dismutase (SOD) activities reduced with increasing atrazine concentrations. Finally atrazine doses at 32.5 mg/kg reduced chlorophyll contents, while chlorophyll (a/b) ratio also enhanced. Biomass, plant height, chlorophyll fluorescence parameters, minimal and maximal fluorescence (Fo, Fm), maximum and actual quantum yield, photochemical quenching coefficient, and electron transport rate are decreased with increasing atrazine doses.  相似文献   
45.
梯度磁场对水稻幼苗生长发育影响的研究   总被引:2,自引:0,他引:2  
本文用梯度磁场处理早稻2号,旱粳子,中百4号和越富四个品种的水稻种子,同时测定了水稻幼苗叶片的叶绿素,脯氨酸,蛋白质含量和膜透性以及SOD,POD活性的变化来研究梯度磁场对水稻幼苗的生物学效应,结果结果;处理后,叶绿素,脯氨酸和蛋白质含量增加,SOD活性升高,膜透性降低,POD活性下降,蛋白质的电泳图谱表明,磁场处理的四个水稻,其蛋白质带和形状相同,但影响蛋白质的表达。  相似文献   
46.
Sheath blight disease caused by Rhizoctonia solani Kuhn is becoming a major constraint to rice production, especially in the intensified cultivation system. To know the in rice, it is important to get the knowledge of the activity of defence-related enzymes due to the fungal infection. The pathogen induced superoxide dismutase (SOD) and chitinase activities in rice plants, while suppressing peroxidase (POD) and phenylalanine ammonia-lyase (PAL) activities at 36 and 24 h after inoculation, respectively. Induction of two POD isozymes, POD-3 and -4, up to 48 h after inoculation and disappearance of the said isomers at 72 h onwards in rice–Rhizoctonia interaction implicated the role of these isomers in susceptible host–pathogen interaction. Apart from POD and SOD, the activities of other stress-related enzymes, viz. PAL, polyphenol oxidase (PPO) and β-1,3-glucanase were also studied. From this study, it was found that these defence-related enzymes are most significantly related to host–pathogenic interaction.  相似文献   
47.
以张杂谷‘3号’、‘5号’、‘6号’及其亲本为材料,通过聚丙烯酰胺垂直板凝胶电泳技术研究不同材料不同生育期苹果酸脱氢酶和过氧化物酶同工酶酶谱特性,同时对总酶活进行了测定,探讨谷子杂种优势的形成机理。结果表明:(1)张杂谷及其亲本叶片苹果酸脱氢酶共有5条酶带,有共同酶带和偏母本型酶带;过氧化物酶同工酶共有14条,属于共同酶带;从负极到正极苹果酸脱氢酶同工酶Rf分别为0.611、0.626、0.642、0.684和0.716,而过氧化物酶同工酶Rf分别为0.08、0.21、0.24、0.30、0.36、0.44、0.49、0.58、0.66、0.69、0.72、0.75、0.85和0.89。(2)杂种苹果酸脱氢酶同工酶和母本酶谱同型,过氧化物酶同工酶酶谱和父母本一致;供试品种苹果酸脱氢酶酶谱相对简单,酶带集中,而过氧化物酶同工酶酶带数量、活性和宽度差异性较大,酶谱比较复杂。(3)所有品种苹果酸脱氢酶总活性在抽穗期最高,过氧化物酶总活性在灌浆初期最高。杂种苹果酸脱氢酶活性在苗期和抽穗期表现出不同程度的超亲优势,而过氧化物酶在抽穗和灌浆初期均表现出不同程度的超亲优势,这可能与杂种优势有关。  相似文献   
48.
为了探讨利用黄瓜毛状根来修复重金属镉(Cd)污染的可能性, 研究了重金属Cd单独及其与锌(Zn)组合对黄瓜毛状根生长及其抗氧化酶SOD、POD活性变化的影响。结果表明, Cd≤10 mg/L仅在培养5~15 d间促进黄瓜毛状根生长, 使根增粗; 而Cd≥15 mg/L则抑制黄瓜毛状根生长, 浓度愈高抑制作用愈明显, 侧根变得短而细小。在供试的不同浓度Cd培养的黄瓜毛状根中, 除10 mg/L Cd外, 其余Cd浓度培养的黄瓜毛状根可溶性蛋白含量随着培养时间的延长而逐渐下降; 但其POD和SOD活性则随着培养时间的延长而逐渐升高。与对照(仅添加25 mg/L Zn)相比, 仅1 mg/L Cd+ 25 mg/L Zn组合在培养7~15 d期间促进黄瓜毛状根生长; 其余浓度Cd和25 mg/L Zn组合都抑制黄瓜毛状根的生长, 且Cd浓度愈高抑制作用越强, 侧根数目更少且短小, 侧根根尖变得肿胀; 同时, 除培养5 d外, 25 mg/L Zn和不同浓度Cd组合培养的黄瓜毛状根的生物量、POD和SOD活性均比单独添加对应浓度Cd培养的毛状根降低, 但其可溶性蛋白含量则较之明显提高。结果表明: 黄瓜毛状根具有较强的重金属Cd耐受能力, 高浓度Cd则抑制其生长; 而镉和锌组合会随着培养时间的延长而加重Cd对黄瓜毛状根生长的抑制作用。  相似文献   
49.
本文以不同浓度Zn(0、5、10、15、20mg/L)处理9d的荇菜(Nymphoides peltatum (Gmel.)O. Kuntze)为实验材料,分析了Zn对叶片超氧化物歧化酶(SOD)和过氧化物酶(POD)活性、渗透调节物质(脯氨酸和可溶性糖)含量的影响,并用焦锑酸钙沉淀的细胞化学方法观察了Zn胁迫条件下叶肉细胞内Ca2+水平和分布的动态变化,以揭示水生植物对Zn胁迫的应答机制。研究结果表明,Zn明显抑制了SOD活性和刺激POD活性上升;脯氨酸和可溶性糖积累显著。电镜观察发现,正常条件下叶细胞中的Ca2+主要定位在胞间隙和液泡中,细胞基质和细胞核中较少。添加Zn后,胞间隙和液泡中的Ca2+逐渐进入细胞质,使细胞质中Ca2+浓度明显升高,特别是在质膜内侧和细胞核中出现大量较大的呈圆环状的钙沉淀颗粒。作者认为与保护酶活性紊乱相比,脯氨酸和可溶性糖在荇菜对Zn胁迫的适应中发挥更大的作用。同时细胞内Ca2+水平的增加,可能与许多生理生化过程的改变有关,其在质膜和细胞核等局部区域的大量分布,将会引发对植物的伤害,直至最终死亡。由此可见,荇菜体内多种防御系统同时对Zn胁迫做出反应,包括诱导胁迫相关酶(POD)活性,增加渗透调节物质(脯氨酸和可溶性糖)合成或含量以及改变疏松结合钙的亚细胞分布和含量等。  相似文献   
50.
把取食24h的转Cry1Ab/Cry1Ac基因水稻叶片的稻纵卷叶螟Cnaphalocrocis medinalis(Guenée)幼虫,分别喂养拟环纹豹蛛3天、6天、9天、12天后,采用酶活力测定方法探究了转基因水稻表达的Bt蛋白对拟环纹豹蛛体内3种保护酶(SOD、POD和CAT)活性的影响。结果表明:就整体来看,实验期间处理组蜘蛛体内3种保护酶(SOD、POD和CAT)的活性均受到Bt蛋白的影响,且前期3种保护酶活性均表现不同程度的被抑制,明显低于对照组。在实验过程中,SOD活性随着处理时间的增加而逐渐增强,至处理第9天时达到最大值;同时处理组POD、CAT活性也随着处理时间的增加而增强,实验初期(前6天)均显著低于对照组,而至第9天则均高于对照组。由此可见,Bt基因在水稻体内所表达的Bt蛋白能够沿食物链传递至次级消费者,并且在一定程度上对次级消费者产生影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号