首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   282篇
  免费   15篇
  国内免费   4篇
  2020年   2篇
  2019年   2篇
  2018年   6篇
  2016年   2篇
  2014年   15篇
  2013年   7篇
  2012年   11篇
  2011年   15篇
  2010年   27篇
  2009年   18篇
  2008年   18篇
  2007年   24篇
  2006年   16篇
  2005年   7篇
  2004年   10篇
  2003年   9篇
  2002年   1篇
  2001年   2篇
  2000年   6篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1984年   3篇
  1983年   7篇
  1982年   11篇
  1981年   4篇
  1980年   3篇
  1979年   21篇
  1978年   3篇
  1977年   5篇
  1976年   8篇
  1975年   9篇
  1974年   4篇
  1973年   13篇
  1971年   1篇
排序方式: 共有301条查询结果,搜索用时 15 毫秒
31.
    
-Crystallin, a major protein of the eye lens, is known to have chaperone activity in preventing heat-induced aggregation of enzymes and other crystallins. In this study, we investigate the ability of -crystallin to inhibit UV-light-induced aggregation of other lens proteins and the effect of exposure of -crystallin to UV irradiation on its chaperone activity. The chaperone activities of -crystallin preincubated at different temperatures were found to be different and could be correlated with its change in quaternary structure as determined by the fluorescence probe ANS (8-anilo-1-naphthalene sulfonate). -Crystallin can inhibit the aggregation of -crystallin from UV irradiation at room temperature, and the preheated -crystallins provide more protection than the native one. Upon irradiation by UV light, -crystallin gradually lost its ability to protect -crystallin against thermal aggregation. The loss of the chaperone efficacy of -crystallin to protect other lens proteins may shed light on human cataract formation induced by long-term exposure to UV irradiation.  相似文献   
32.
We have investigated the aggregation and amyloid fibril formation of bovine β-lactoglobulin variant A, with a focus on the early stages of aggregation. We used noncovalent labeling with thioflavin T and 1-anilino-8-naphthalenesulfonate to follow the conformational changes occurring in β-lactoglobulin during aggregation using time resolved luminescence. 1-Anilino-8-naphthalenesulfonate monitored the involvement of the hydrophobic core/calyx of β-lactoglobulin in the aggregation process. Thioflavin T luminescence monitored the formation of amyloid. The luminescence lifetime distributions of both probes showed changes that could be attributed to conformational changes occurring during and following aggregation. To correlate the luminescence measurements with the degree of aggregation and the morphology of the aggregates, we also measured dynamic light scattering and atomic force microscopy images. We evaluated the relative stability of the intermediates with an assay that is sensitive to aggregation reversibility. Our results suggest that initial aggregation during the first 5 days occurred with partial disruption of the characteristic calyx in β-lactoglobulin. As the globular aggregates grew from days 5 to 16, the calyx was completely disrupted and the globular aggregates became more stable. After this second phase of aggregation, conversion into a fibrillar form occurred, marking the growth phase, and still more changes in the luminescence signals were observed. Based on these observations, we propose a three-step process by which monomer is converted first into weakly associated aggregates, which rearrange into stable aggregates, which eventually convert into protofibrils that elongate in the growth phase.  相似文献   
33.
The purpose of this study is to clarify that the amino acid residues (Asp62 and Arg193) are responsible for the activity and stability of arginine kinase (AK). The amino acid residues Asp62 (D62) and Arg193 (R193) are strictly conserved in monomeric AKs and form an ion pair in the transition state analogue complex. In this research, we replaced D62 with glutamate (E) or glycine (G) and R193 with lysine (K) or glycine (G). The mutants of D62E and R193K retained almost 90% of the wild-type activity, whereas D62G and R193G had a pronounced loss in activity. A detailed comparison was made between the physic-chemical properties and conformational changes of wild-type AK and the mutants by means of ultraviolet (UV) difference and fluorescence spectra. The results indicated that the conformation of all of the mutants had been changed and the stability in a urea solution was also reduced. We speculated that the hydrogen bond and electrostatic interactions formed between residues 62 and 193 play a key role in stabilizing the structure and mediating the synergism in substrate binding of arginine kinase from greasyback shrimp (Metapenaeus ensis).  相似文献   
34.
Stem bromelain (SBM) is a therapeutic protein that has been studied for alkaline denaturation in the intestines, the principal site of its absorption. In this study, we investigated fluorinated alcohol 2,2,2-trifluoroethanol (TFE)-induced conformational changes in the specific/pre-molten globule (SMG) state of SBM observed at pH 10 by spectroscopic methods. Far-UV circular dichroism (CD) spectra showed that the protein retained its native-like secondary structure at TFE concentrations of up to 30% with a pronounced minimum at 222 nm, characteristic of a helix. However, addition of slightly higher TFE concentrations (≥40%) resulted in an ∼2.5-fold induction of this helical feature and a time-dependent increase in non-amyloidic turbidity as evidenced by turbidometric, Congo red-binding, and Thioflavin T (ThT)-binding studies. Near-UV CD spectra suggested a gradual but significant loss of tertiary structure at 10-30% TFE. Tryptophan studies showed blue-shifted fluorescence, although the number of accessible tryptophans remained the same up to 30% TFE. The SMG showed enhanced binding of the fluorescent probe 1-anilino-8-naphthalene sulfonic acid (ANS) up to 30% TFE, beyond which binding plateaued. Thermal and guanidine hydrochloride (GdnHCl) transition studies in the near-UV range indicated a single cooperative transition for the SMG state in the presence of 30% TFE, similar to that observed for native SBM at pH 7.0 (although with different Tms), unlike the SMG state. TFE (30%) appeared to induce native-like stability to the original SMG. These observations suggest a transformation of the SMG to a characteristic molten globule (MG) conformation at 30% TFE, possibly due to TFE-induced rearrangement of hydrophobic interactions at the protein's isoelectric point.  相似文献   
35.
Human apolipoprotein E (apoE) is a 299-amino-acid protein with a molecular weight of 34 kDa. The difference between the apoE3 and apoE4 isoforms is a single residue substitution involving a Cys-Arg replacement at residue 112. ApoE4 is positively associated with atherosclerosis and late-onset and sporadic Alzheimer's disease (AD). ApoE4 and its C-terminal truncated fragments have been found in the senile plaques and neurofibrillary tangles in the brain of AD patients. However, detail structural information regarding isoform and domain interaction remains poorly understood. We prepared full-length, N-, and C-terminal truncated apoE3 and apoE4 proteins and studied their structural variation. Sedimentation velocity and continuous size distribution analysis using analytical ultracentrifugation revealed apoE3(72-299) as consisting of a major species with a sedimentation coefficient of 5.9. ApoE4(72-299) showed a wider and more complicated species distribution. Both apoE3 and E4 N-terminal domain (1-191) existed with monomers as the major component together with some tetramer. The oligomerization and aggregation of apoE protein increased when the C-terminal domain (192-271) was incorporated. The structural influence of the C-terminal domain on apoE is to assist self-association with no significant isoform preference. Circular dichroism and fluorescence studies demonstrated that apoE4(72-299) possessed a more alpha-helical structure with more hydrophobic residue exposure. The structural variation of the N-terminal truncated apoE3 and apoE4 protein provides useful information that helps to explain the greater aggregation of the apoE4 isoform and thus has implication for the involvement of apoE4 in AD.  相似文献   
36.
Yasuaki Takeuchi 《BBA》1975,376(3):505-518
1. The uncoupler-stimulated ATPase activity of castor bean endosperm mitochondria and submitochondrial particles has been studied. The rate of ATP hydrolysis catalyzed by intact mitochondria was slow and little enhanced by addition of uncouplers at the concentration required for uncoupling the oxidative phosphorylation. ATPase activity was stimulated at higher concentrations of uncouplers.

2. 1-Anilinonaphthalene 8-sulfonate fluorescence was decreased when the mitochondria were oxidizing succinate. Carbonylcyanide-p-trifluoromethoxyphenylhydrazone and antimycin reversed the succinate-induced fluorescence diminution. ATP did not induce the fluorescence response.

3. The addition of succinate, NADH or ascorbate/N,N,N′,N′-tetramethyl-p-phenylenediamine as electron donor induced high ATPase activity in the presence of low concentrations of uncouplers. Stimulating effect of uncouplers was completely abolished by further addition of antimycin.

4. Submitochondrial particles were prepared by sonication. The particles catalyzed a rapid hydrolysis of ATP and carbonylcyanide-p-trifluoromethoxyphenylhydrazone at 10-8 M did not stimulate the ATPase activity. Addition of succinate induced uncoupler-stimulated ATPase activity. The effect of succinate was completely abolished by further addition of antimycin.

5. The treatment of submitochondrial particles by trypsin or high pH also induced uncoupler-stimulated ATPase activity.

6. The above results were interpreted to indicate that ATPase inhibitor regulated the back-flow reaction of mitochondrial oxidative phosphorylation.  相似文献   

37.
Previous works reported that a mild increase in homocysteine level is a risk factor for cardiovascular and neurodegenerative diseases in humans. Homocysteine thiolactone is a cyclic thioester, most of which is produced by an error-editing function of methionyl-tRNA synthetase, causing in vivo post-translational protein modifications by reacting with the ?-amino group of lysine residues. In cells, the rate of homocysteine thiolactone synthesis is strictly dependent on the levels of the precursor metabolite, homocysteine. In this work, using bovine serum albumin as a model, we investigated the impact of N-homocysteinylation on protein conformation as well as its cellular actions. Previous works demonstrated that protein N-homocysteinylation causes enzyme inactivation, protein aggregation, and precipitation. In addition, in the last few years, several pieces of evidence have indicated that protein unfolding and aggregation are crucial events leading to the formation of amyloid fibrils associated with a wide range of human pathologies. For the first time, our results reveal how the low level of protein N-homocysteinylation can induce mild conformational changes leading to the formation of native-like aggregates evolving over time, producing amyloid-like structures. Taking into account the fact that in humans about 70% of circulating homocysteine is N-linked to blood proteins such as serum albumin and hemoglobin, the results reported in this article could have pathophysiological relevance and could contribute to clarify the mechanisms underlying some pathological consequences described in patients affected by hyperhomocysteinemia.  相似文献   
38.
Repeat in toxin (RTX) motifs are nonapeptide sequences found among numerous virulence factors of Gram-negative bacteria. In the presence of calcium, these RTX motifs are able to fold into an idiosyncratic structure called the parallel β-roll. The adenylate cyclase toxin (CyaA) produced by Bordetella pertussis, the causative agent of whooping cough, is one of the best-characterized RTX cytolysins. CyaA contains a C-terminal receptor domain (RD) that mediates toxin binding to the eukaryotic cell receptor. The receptor-binding domain is composed of about forty RTX motifs organized in five successive blocks (I to V). The RTX blocks are separated by non-RTX flanking regions of variable lengths. It has been shown that block V with its N- and C-terminal flanking regions constitutes an autonomous subdomain required for the toxicity of CyaA. Here, we investigated the calcium-induced biophysical changes of this subdomain to identify the respective contributions of the flanking regions to the folding process of the RTX motifs. We showed that the RTX polypeptides, in the absence of calcium, exhibited the hallmarks of intrinsically disordered proteins and that the C-terminal flanking region was critical for the calcium-dependent folding of the RTX polypeptides, while the N-terminal flanking region was not involved. Furthermore, the secondary and tertiary structures were acquired concomitantly upon cooperative binding of several calcium ions. This suggests that the RTX polypeptide folding is a two-state reaction, from a calcium-free unfolded state to a folded and compact conformation, in which the calcium-bound RTX motifs adopt a β-roll structure. The relevance of these results to the toxin physiology, in particular to its secretion, is discussed.  相似文献   
39.
Originally isolated on the basis of its capacity to stimulate T-cell maturation and proliferation, avian thymic hormone (ATH) is nevertheless a parvalbumin, one of two β-lineage isoforms expressed in birds. We recently learned that addition of Ca2+-free ATH to a solution of 8-anilinonaphthalene-1-sulfonate (ANS) markedly increases ANS emission. This behavior, not observed in the presence of Ca2+, suggests that apolar surface area buried in the Ca2+-bound state becomes solvent accessible upon Ca2+ removal. In order to elucidate the conformational alterations that accompany Ca2+ binding, we have obtained the solution structure of the Ca2+-free protein using NMR spectroscopy and compared it to the Ca2+-loaded protein, solved by X-ray crystallography. Although the metal-ion-binding (CD-EF) domains are largely coincident in the superimposed structures, a major difference is observed in the AB domains. The tight association of helix B with the E and F helices in the Ca2+-bound state is lost upon removal of Ca2+, producing a deep hydrophobic cavity. The B helix also undergoes substantial rotation, exposing the side chains of F24, Y26, F29, and F30 to solvent. Presumably, the increase in ANS emission observed in the presence of unliganded ATH reflects the interaction of these hydrophobic residues with the fluorescent probe. The increased solvent exposure of apolar surface area in the Ca2+-free protein is consistent with previously collected scanning calorimetry data, which indicated an unusually low change in heat capacity upon thermal denaturation. The Ca2+-free structure also provides added insight into the magnitude of ligation-linked conformational alteration compatible with a high-affinity metal-ion-binding signature. The exposure of substantial apolar surface area suggests the intriguing possibility that ATH could function as a reverse Ca2+ sensor.  相似文献   
40.
Photoreversible changes in the conformation and enzymatic activity of bovine carbonic anhydrase have been investigated as a function of photoresponsive surfactant concentration and light conditions. The light-responsive surfactant undergoes a photoisomerization from the relatively hydrophobic trans isomer under visible light to the relatively hydrophilic cis isomer upon UV illumination, providing a means to photoreversibly control enzyme–surfactant interactions. Small-angle neutron scattering and dynamic light scattering measurements, along with fluorescence spectroscopy, indicate that carbonic anhydrase unfolds upon addition of the surfactant under visible light, while only a small degree of unfolding is observed under UV light. Therefore, the enzyme is completely inactivated in the presence of the trans surfactant, while 40% of the native activity is preserved under UV light, providing a photoreversible “on/off switch” of enzyme activity. Small-angle neutron scattering data provide details of the in vitro conformational changes of the enzyme in response to the photosurfactant and light, with the enzyme found to aggregate as a result of photosurfactant-induced unfolding. Fourier transform infrared (FT-IR) spectroscopy further provides information on the secondary structure changes of the protein in the presence of photosurfactant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号