首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   282篇
  免费   15篇
  国内免费   4篇
  2020年   2篇
  2019年   2篇
  2018年   6篇
  2016年   2篇
  2014年   15篇
  2013年   7篇
  2012年   11篇
  2011年   15篇
  2010年   27篇
  2009年   18篇
  2008年   18篇
  2007年   24篇
  2006年   16篇
  2005年   7篇
  2004年   10篇
  2003年   9篇
  2002年   1篇
  2001年   2篇
  2000年   6篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1984年   3篇
  1983年   7篇
  1982年   11篇
  1981年   4篇
  1980年   3篇
  1979年   21篇
  1978年   3篇
  1977年   5篇
  1976年   8篇
  1975年   9篇
  1974年   4篇
  1973年   13篇
  1971年   1篇
排序方式: 共有301条查询结果,搜索用时 31 毫秒
11.
When observed over a temperature range, erythrocyte membrane lipids undergo a transition at 18–20 °C (Zimmer, G. and Shirmer, H. (1974) Biochim. Biophys. Acta 345, 314–320). This observation has prompted an investigation of the effects that substrate binding has on the transition of the red cell membrane. Glucose and sorbose were compared, since transport kinetics of these sugars still pose unresolved questions.In membranes, preloaded with glucose, the break at the transition temperature was intensified, while it was abolished or reversed in membranes preloaded with sorbose.These results were corroborated using different solubilization procedures (sonication, sodium dodecyl sulfate treatment) of the membranes, and also different techniques (viscosimetry, 90° light scattering, 1-anilino-naphthalene-8-sulfonate fluorescence).In extracted membrane lipids, viscosimetry indicated a break at transition temperature after preloading with either glucose or sorbose.Disc electrophoresis revealed a different binding pattern of the two sugars.It is suggested, that the amplification of the discontinuity in red cell membranes by glucose and the abolition or reversal of the break by sorbose are mediated by membrane protein- and/or membrane lipid-protein interaction.  相似文献   
12.
Gyrate atrophy (GA) is a rare recessive disorder characterized by progressive blindness, chorioretinal degeneration and systemic hyperornithinemia. GA is caused by point mutations in the gene encoding ornithine δ-aminotransferase (OAT), a tetrameric pyridoxal 5′-phosphate-dependent enzyme catalysing the transamination of l-ornithine and α-ketoglutarate to glutamic–γ-semialdehyde and l-glutamate in mitochondria. More than 50 OAT variants have been identified, but their molecular and cellular properties are mostly unknown. A subset of patients is responsive to pyridoxine administration, although the mechanisms underlying responsiveness have not been clarified. Herein, we studied the effects of the V332M mutation identified in pyridoxine-responsive patients. The Val332-to-Met substitution does not significantly affect the spectroscopic and kinetic properties of OAT, but during catalysis it makes the protein prone to convert into the apo-form, which undergoes unfolding and aggregation under physiological conditions. By using the CRISPR/Cas9 technology we generated a new cellular model of GA based on HEK293 cells knock-out for the OAT gene (HEK-OAT_KO). When overexpressed in HEK-OAT_KO cells, the V332M variant is present in an inactive apodimeric form, but partly shifts to the catalytically-competent holotetrameric form in the presence of exogenous PLP, thus explaining the responsiveness of these patients to pyridoxine administration. Overall, our data represent the first integrated molecular and cellular analysis of the effects of a pathogenic mutation in OAT. In addition, we validated a novel cellular model for the disease that could prove instrumental to define the molecular defect of other GA-causing variants, as well as their responsiveness to pyridoxine and other putative drugs.  相似文献   
13.
The in vivo activities and conformational changes of ribosome recycling factor from Thermoanaerobacter tengcongensis (TteRRF) with 12 successive C-terminal deletions were compared. The results showed that TteRRF mutants lacking one to four amino acid residues are inactive, those lacking five to nine are reactivated to a similar or a little higher level than wild-type TteRRF, and those lacking ten to twelve are inactivated again gradually. Conformational studies indicated that only the ANS binding fluorescence change is correlated well with the RRF in vivo activity change, while the secondary structure and local structure at the aromatic residues are not changed significantly. Trypsin cleavage site identification and protein stability measurement suggested that mutation only induced subtle conformation change and increased flexibility of the protein. Our results indicated that the ANS-detected local conformation changes of TteRRF and mutants are one verified direct reason of the in vivo inactivation and reactivation in Escherichia coli.  相似文献   
14.
Chemical denaturant sensitivity of the dimeric main protease from severe acute respiratory syndrome (SARS) coronavirus to guanidinium chloride was examined in terms of fluorescence spectroscopy, circular dichroism, analytical ultracentrifuge, and enzyme activity change. The dimeric enzyme dissociated at guanidinium chloride concentration of <0.4 M, at which the enzymatic activity loss showed close correlation with the subunit dissociation. Further increase in guanidinium chloride induced a reversible biphasic unfolding of the enzyme. The unfolding of the C-terminal domain-truncated enzyme, on the other hand, followed a monophasic unfolding curve. Different mutants of the full-length protease (W31 and W207/W218), with tryptophanyl residue(s) mutated to phenylalanine at the C-terminal or N-terminal domain, respectively, were constructed. Unfolding curves of these mutants were monophasic but corresponded to the first and second phases of the protease, respectively. The unfolding intermediate of the protease thus represented a folded C-terminal domain but an unfolded N-terminal domain, which is enzymatically inactive due to loss of regulatory properties. The various enzyme forms were characterized in terms of hydrophobicity and size-and-shape distributions. We provide direct evidence for the functional role of C-terminal domain in stabilization of the catalytic N-terminal domain of SARS coronavirus main protease.  相似文献   
15.
The purpose of this study is to clarify that the amino acid residues (Asp62 and Arg193) are responsible for the activity and stability of arginine kinase (AK). The amino acid residues Asp62 (D62) and Arg193 (R193) are strictly conserved in monomeric AKs and form an ion pair in the transition state analogue complex. In this research, we replaced D62 with glutamate (E) or glycine (G) and R193 with lysine (K) or glycine (G). The mutants of D62E and R193K retained almost 90% of the wild-type activity, whereas D62G and R193G had a pronounced loss in activity. A detailed comparison was made between the physic-chemical properties and conformational changes of wild-type AK and the mutants by means of ultraviolet (UV) difference and fluorescence spectra. The results indicated that the conformation of all of the mutants had been changed and the stability in a urea solution was also reduced. We speculated that the hydrogen bond and electrostatic interactions formed between residues 62 and 193 play a key role in stabilizing the structure and mediating the synergism in substrate binding of arginine kinase from greasyback shrimp (Metapenaeus ensis).  相似文献   
16.
Stem bromelain (SBM) is a therapeutic protein that has been studied for alkaline denaturation in the intestines, the principal site of its absorption. In this study, we investigated fluorinated alcohol 2,2,2-trifluoroethanol (TFE)-induced conformational changes in the specific/pre-molten globule (SMG) state of SBM observed at pH 10 by spectroscopic methods. Far-UV circular dichroism (CD) spectra showed that the protein retained its native-like secondary structure at TFE concentrations of up to 30% with a pronounced minimum at 222 nm, characteristic of a helix. However, addition of slightly higher TFE concentrations (≥40%) resulted in an ∼2.5-fold induction of this helical feature and a time-dependent increase in non-amyloidic turbidity as evidenced by turbidometric, Congo red-binding, and Thioflavin T (ThT)-binding studies. Near-UV CD spectra suggested a gradual but significant loss of tertiary structure at 10-30% TFE. Tryptophan studies showed blue-shifted fluorescence, although the number of accessible tryptophans remained the same up to 30% TFE. The SMG showed enhanced binding of the fluorescent probe 1-anilino-8-naphthalene sulfonic acid (ANS) up to 30% TFE, beyond which binding plateaued. Thermal and guanidine hydrochloride (GdnHCl) transition studies in the near-UV range indicated a single cooperative transition for the SMG state in the presence of 30% TFE, similar to that observed for native SBM at pH 7.0 (although with different Tms), unlike the SMG state. TFE (30%) appeared to induce native-like stability to the original SMG. These observations suggest a transformation of the SMG to a characteristic molten globule (MG) conformation at 30% TFE, possibly due to TFE-induced rearrangement of hydrophobic interactions at the protein's isoelectric point.  相似文献   
17.
The role of the aromatic residue at site 75 to protein stability, the mechanism of folding and the mechanism of amyloid-fibril formation were investigated for the human stefin B variant (bearing Y at site 31) and its point mutation H75W. With an aim to reveal the conformation at the cross-road between folding and aggregation, first, the kinetics of folding and oligomer formation by human stefin B(Y31) variant were studied. It was found to fold in three kinetic phases at pH 4.8 and 10% TFE; the pH and solvent conditions that transform the protein into amyloid fibrils at longer times. The same pH leads to the formation of native-like intermediate (known from previous studies of this variant), meaning that the process of folding and amyloid-fibril formation share the same structural intermediate, which is in this case native-like and dimeric. At pH 5.8 and 7.0 stefin B folded to the native state in four kinetic phases over two intermediates. In distinction, the mutant H75W did not fold to completion, ending in intermediate states at all pH values studied: 4.8, 5.8 and 7.0. At pH 4.8 and 5.8, the mutant folded in one kinetic phase to the intermediate of the “molten globule” type, which leads to the conclusion that its mechanism of folding differs from the one of the parent stefin B at the same pH. At pH 7.0 the mutant H75W folded in three kinetic phases to a native-like intermediate, analogous to folding of stefin B at pH 4.8.  相似文献   
18.
We have investigated the aggregation and amyloid fibril formation of bovine β-lactoglobulin variant A, with a focus on the early stages of aggregation. We used noncovalent labeling with thioflavin T and 1-anilino-8-naphthalenesulfonate to follow the conformational changes occurring in β-lactoglobulin during aggregation using time resolved luminescence. 1-Anilino-8-naphthalenesulfonate monitored the involvement of the hydrophobic core/calyx of β-lactoglobulin in the aggregation process. Thioflavin T luminescence monitored the formation of amyloid. The luminescence lifetime distributions of both probes showed changes that could be attributed to conformational changes occurring during and following aggregation. To correlate the luminescence measurements with the degree of aggregation and the morphology of the aggregates, we also measured dynamic light scattering and atomic force microscopy images. We evaluated the relative stability of the intermediates with an assay that is sensitive to aggregation reversibility. Our results suggest that initial aggregation during the first 5 days occurred with partial disruption of the characteristic calyx in β-lactoglobulin. As the globular aggregates grew from days 5 to 16, the calyx was completely disrupted and the globular aggregates became more stable. After this second phase of aggregation, conversion into a fibrillar form occurred, marking the growth phase, and still more changes in the luminescence signals were observed. Based on these observations, we propose a three-step process by which monomer is converted first into weakly associated aggregates, which rearrange into stable aggregates, which eventually convert into protofibrils that elongate in the growth phase.  相似文献   
19.
Lipocalins, a widespread multifunctional family of small proteins (15-25kDa) have been first described in eukaryotes and more recently in Gram-negative bacteria. Bacterial lipocalins belonging to class I are outer membrane lipoproteins, among which Blc from E. coli is the better studied. Blc is expressed under conditions of starvation and high osmolarity, conditions known to exert stress on the cell envelope. The structure of Blc that we have previously solved (V. Campanacci, D. Nurizzo, S. Spinelli, C. Valencia, M. Tegoni, C. Cambillau, FEBS Lett. 562 (2004) 183-188.) suggested its possible role in binding fatty acids or phospholipids. Both physiological and structural data on Blc, therefore, point to a role in storage or transport of lipids necessary for membrane maintenance. In order to further document this hypothesis for Blc function, we have performed binding studies using fluorescence quenching experiments. Our results indicate that dimeric Blc binds fatty acids and phospholipids in a micromolar K(d) range. The crystal structure of Blc with vaccenic acid, an unsaturated C18 fatty acid, reveals that the binding site spans across the Blc dimer, opposite to its membrane anchored face. An exposed unfilled pocket seemingly suited to bind a polar group attached to the fatty acid prompted us to investigate lyso-phospholipids, which were found to bind in a nanomolar K(d) range. We discuss these findings in terms of a potential role for Blc in the metabolism of lysophospholipids generated in the bacterial outer membrane.  相似文献   
20.
To investigate the metal-binding properties of KChIP1, the interaction of KChIP1 and mutated KChIP1 with divalent cations (Mg(2+), Ca(2+), Sr(2+), and Ba(2+)) was explored by 8-anilinonaphthalene-1-sulfonate (ANS) fluorescence. It showed that KChIP1 possessed two types of Ca(2+)-binding sites, high-affinity and low-affinity Ca(2+)-binding sites. However, only low-affinity-binding site for Mg(2+), Sr(2+), and Ba(2+) was observed. The metal-binding properties of KChIP1 are not appreciably affected after removal of the N-terminal portion and EF-hand 1. Deleting the EF-hand 4 of KChIP1 abolishes its high-affinity Ca(2+)-binding site, but retains the intact low-affinity-binding site for metal ions. A decrease in the nonpolarity of ANS-binding site occurs with all mutants. However, the binding of ANS with KChIP1 is no longer observed after removal of EF-hands 3 and 4. Intermolecular interaction assessed by chemical cross-linking suggested that KChIP1 had a propensity to form dimer in the absence of metal ions, and a KChIP1 tetramer was pronouncedly produced in the presence of metal ions. Noticeably, the oligomerization state depends on the integrity of EF-hand 4. Taken together, our data suggest that EF-hand 4 is of structural importance as well as functional importance for fulfilling the physiological function of KChIP1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号