首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 370 毫秒
1.
An increased level of homocysteine, a reactive thiol amino acid, is associated with several complex disorders and is an independent risk factor for cardiovascular disease. A majority (>80%) of circulating homocysteine is protein bound. Homocysteine exclusively binds to protein cysteine residues via thiol disulfide exchange reaction, the mechanism of which has been reported. In contrast, homocysteine thiolactone, the cyclic thioester of homocysteine, is believed to exclusively bind to the primary amine group of lysine residue leading to N-homocysteinylation of proteins and hence studies on binding of homocysteine thiolactone to proteins thus far have only focused on N-homocysteinylation. Although it is known that homocysteine thiolactone can hydrolyze to homocysteine at physiological pH, surprisingly the extent of S-homocysteinylation during the exposure of homocysteine thiolactone with proteins has never been looked into. In this study, we clearly show that the hydrolysis of homocysteine thiolactone is pH dependent, and at physiological pH, 1 mM homocysteine thiolactone is hydrolysed to ~0.71 mM homocysteine within 24 h. Using albumin, we also show that incubation of HTL with albumin leads to a greater proportion of S-homocysteinylation (0.41 mol/mol of albumin) than N-homocysteinylation (0.14 mol/mol of albumin). S-homocysteinylation at Cys34 of HSA on treatment with homocysteine thiolactone was confirmed using LC-MS. Further, contrary to earlier reports, our results indicate that there is no cross talk between the cysteine attached to Cys34 of albumin and homocysteine attached to lysine residues.  相似文献   

2.
Homocysteine thiolactone is a toxic metabolite produced from homocysteine by amino-acyl t-RNA synthetase in error editing reaction. The basic cause of toxicity of homocysteine thiolactone is believed to be due to the adduct formation with lysine residues (known as protein N-homocysteinylation) leading to protein aggregation and loss of enzyme function. There was no data available until now that showed the effect of homocysteine thiolactone on the native state structural changes that led to aggregate formation. In the present study we have investigated the time dependent structural changes due to homocysteine thiolactone induced modifications on three different proteins having different physico-chemical properties (cytochrome-c, lysozyme and alpha lactalbumin). We discovered that N-homocysteinylation leads to the formation of molten globule state—an important protein folding intermediate in the protein folding pathway. We also found that the formation of the molten globule state might be responsible for the appearance of aggregate formation. The study indicates the importance of protein folding intermediate state in eliciting the homocysteine thiolactone toxicity.  相似文献   

3.
While the association of homocystinuria with disease is known for more than four decades, mild hyperhomocysteinemia has been detected more recently as a risk factor for a number of diseases. However, the mechanism which apparently renders (even mild) hyperhomocystenemia harmful is not known. Following reports on N-homocysteinylation of proteins by the homocysteine derivative homocysteine thiolactone, it has been suggested that homocysteinylation of proteins may contribute to the induction of biological effects by homocysteine. This has prompted us to study by electrospray ionization mass spectrometry homocysteinylation of transthyretin (TTR) in plasma and serum of humans with different types of hyperhomocysteinemia. We did not detect any N-homocysteinylation, but found pronounced S-homocysteinylation of TTR, if the concentration of total homocysteine was high. Our findings support a possible role of S-homocysteinylation of proteins in the mediation of detrimental effects of hyperhomocysteinemia. Careful study of posttranslational modifications of individual proteins may contribute to a better understanding of diseases associated with hyperhomocysteinemia.  相似文献   

4.
Summary. Homocysteine, a non-protein amino acid, is an important risk factor for ischemic heart disease and stroke in humans. This review provides an overview of homocysteine influence on endothelium function as well as on protein metabolism with a special respect to posttranslational modification of protein with homocysteine thiolactone. Homocysteine is a pro-thrombotic factor, vasodilation impairing agent, pro-inflammatory factor and endoplasmatic reticulum-stress inducer. Incorporation of Hcy into protein via disulfide or amide linkages (S-homocysteinylation or N-homocysteinylation) affects protein structure and function. Protein N-homocysteinylation causes cellular toxicity and elicits autoimmune response, which may contribute to atherogenesis. Present address: Department of Biochemistry and Biotechnology, Agricultural University, 60637 Poznań, Poland  相似文献   

5.
Elevated levels of homocysteine (Hcy) are associated with cardiovascular and neurodegenerative diseases in humans. Hcy becomes a component of human proteins as a result of N-homocysteinylation of protein lysine residues by Hcy-thiolactone, which affects the protein's structure and function, and contributes to Hcy-related pathology. Albumin is the major target for N-homocysteinylation in human blood in vivo. Previous work has identified Lys-525 as a predominant site of N-homocysteinylation in vitro and in vivo. Here we show that Lys-4, Lys-12, Lys-137, Lys-159, Lys-205, and Lys-212 of human albumin are susceptible to N-homocysteinylation in vitro and provide evidence that two of those residues, Lys-137 and Lys-212, in addition to Lys-525, are N-homocysteinylated in vivo in human plasma.  相似文献   

6.
Protein N-homocysteinylation involves a post-translational modification by homocysteine (Hcy)-thiolactone. In humans, about 70% of circulating Hcy is N-linked to blood proteins, mostly to hemoglobin and albumin. It was unclear what protein site(s) were prone to Hcy attachment and how N-linked Hcy affected protein function. Here we show that Lys(525) is a predominant site of N-homocysteinylation in human serum albumin in vitro and in vivo. We also show that the reactivity of albumin lysine residues, including Lys(525), is affected by the status of Cys(34). The disulfide forms of circulating albumin, albumin-Cys(34)-S-S-Cys and albumin-Cys(34)-S-S-Hcy, are N-homocysteinylated faster than albumin-Cys(34)-SH. Although N-homocysteinylations of albumin-Cys(34)-SH and albumin-Cys(34)-S-S-Cys yield different primary products, subsequent thiol-disulfide exchange reactions result in the formation of a single product, N-(Hcy-S-S-Cys)-albumin-Cys(34)-SH. We also show that N-homocysteinylation affects the susceptibility of albumin to oxidation and proteolysis. The data suggest that a disulfide at Cys(34) of albumin promotes conversion of N-(Hcy-SH)-albumin-Cys(34)-SH to a proteolytically sensitive form N-(Hcy-S-S-Cys)-albumin-Cys(34)-SH, which would facilitate clearance of the N-homocysteinylated form of mercaptoalbumin.  相似文献   

7.
A N-trifluoroacetyl-protected amino acid containing a thioester function, 2,2,2-trifluoro-N-(2-oxo-tetrahydrothiophen-3-yl)acetamide (TFA-tHcy), has been synthesized and characterized. It was then used to prepare a fluorine-labeled N-homocysteinylated protein, 19F-Hcy-εN-Lys-albumin, that was characterized by SDS-PAGE, MALDI-TOF-MS, UV-vis and 19F NMR spectroscopy. On average, four N-trifluoroacetylhomocysteine residues were covalently conjugated to human serum albumin through the N-substituted homocysteine thiolactone. The in situ homocysteinylation of human plasma proteins with TFA-tHcy has also been performed and has led to the formation of N-homocysteinylated proteins, with albumin modification accounting for ca. 75% of all fluorine-labeled human plasma proteins. The synthesized fluorinated molecular probes can be potentially used as informative molecular probes for in vivo 19F magnetic resonance spectroscopy and imaging.  相似文献   

8.
In the present article we discuss the most recent data regarding the role of homocysteine, its cyclic thioester--homocysteine thiolactone and the process of protein N-homocysteinylation in human disease. The protective role of thiolactonase/paraoxonase enzyme, carried on high density lipoproteins (HDL) in human blood, as well as the influence of structural modifications on HDL function are discussed. We also describe the effect of vitamin therapy (folic acid, vitamins: B6, B12) used for lowering the homocysteine level in humans as well.  相似文献   

9.
Elevated homocysteine levels are resulting in N-homocysteinylation of lysyl residues in proteins and they correlate with a number of human pathologies. However, the role of homocysteinylation of lysyl residues is still poorly known. In order to study the features of homocysteinylation of intrinsically unstructured proteins (IUP) bovine caseins were used as a model. α(S1)-, β- and κ-caseins, showing different aggregations and micelle formation, were modified with homocysteine-thiolactone and their physico-chemical properties were studied. Efficiency of homocysteine incorporation was estimated to be about 1.5, 2.1 and 1.3 homocysteyl residues per one β-, α(S1)-, and κ-casein molecule, respectively. Use of intrinsic and extrinsic fluorescent markers such as Trp, thioflavin T and ANS, reveal structural changes of casein structures after homocysteinylation reflected by an increase in beta-sheet content, which in some cases may be characteristic of amyloid-like transformations. CD spectra also show an increase in beta-sheet content of homocysteinylated caseins. Casein homocysteinylation leads in all cases to aggregation. The sizes of aggregates and aggregation rates were dependent on homocysteine thiolactone concentration and temperature. DLS and microscopic studies have revealed the formation of large aggregates of about 1-3μm. Homocysteinylation of α(S1)- and β-caseins results in formation of regular spheres. Homocysteinylated κ-casein forms thin unbranched fibrils about 400-800nm long. In case of κ-casein amyloidogenic effect of homocysteinylation was confirmed by Congo red spectra. Taken together, data indicate that N-homocysteinylation provokes significant changes in properties of native caseins. A comparison of amyloidogenic transformation of 3 different casein types, belonging to the IUP protein family, shows that the efficiency of amyloidogenic transformation upon homocysteinylation depends on micellization capacity, additional disulphide bonds and other structural features.  相似文献   

10.
Abstract Hyperhomocysteinemia has recently been identified as an important risk factor for Alzheimer's disease (AD). One of the potential mechanisms underlying harmful effects of homocysteine (Hcy) is site-specific acylation of proteins at lysine residues by homocysteine thiolactone (HCTL). The accumulation of amyloid β-peptide (Aβ) in the brain is a neuropathological hallmark of AD. In the present study we were interested to investigate the effects of N-homocysteinylation on the aggregation propensity and neurotoxicity of Aβ(1-42). By coupling several techniques, we demonstrated that the homocysteinylation of lysine residues increase the neurotoxicity of the Aβ peptide by stabilizing soluble oligomeric intermediates.  相似文献   

11.
Alpha-fetoprotein and fetal serum albumin have been simultaneously purified from fetal bovine serum by mild procedures utilizing ammonium sulfate, hydrophobic interaction, immobilized metal (nickel) affinity chromatography, and isoelectric focusing. The lipidic extract from each protein was analyzed by gas chromatography and the peak appearing just after the arachidonic acid was identified as squalene by gas chromatography-mass spectrometry. This isoprenoid was not detected formerly in these proteins from human, rat, bovine, and pig. Until recently, in the analysis of the fatty acid composition of the alpha-fetoprotein and serum albumin from mammals, a peak has been assigned in the last part of the chromatographic profile, after arachidonic acid, to docosahexaenoic acid. In the present work, it was found that the peak corresponds to squalene instead of docosahexaenoic acid. Furthermore, we conclude that bovine alpha-fetoprotein and fetal serum albumin carry squalene, but not docosahexaenoic acid. These results agree with others obtained analyzing the same proteins from chick embryo.  相似文献   

12.
The aggregation of α-synuclein plays a pivotal role in the pathogenesis of Parkinson's disease (PD). Epidemiological evidence indicates that high level of homocysteine (Hcy) is associated with an increased risk of PD. However, the molecular mechanisms remain elusive. Here, we report that homocysteine thiolactone (HTL), a reactive thioester of Hcy, covalently modifies α-synuclein on the K80 residue. The levels of α-synuclein K80Hcy in the brain are increased in an age-dependent manner in the TgA53T mice, correlating with elevated levels of Hcy and HTL in the brain during aging. The N-homocysteinylation of α-synuclein stimulates its aggregation and forms fibrils with enhanced seeding activity and neurotoxicity. Intrastriatal injection of homocysteinylated α-synuclein fibrils induces more severe α-synuclein pathology and motor deficits when compared with unmodified α-synuclein fibrils. Increasing the levels of Hcy aggravates α-synuclein neuropathology in a mouse model of PD. In contrast, blocking the N-homocysteinylation of α-synuclein ameliorates α-synuclein pathology and degeneration of dopaminergic neurons. These findings suggest that the covalent modification of α-synuclein by HTL promotes its aggregation. Targeting the N-homocysteinylation of α-synuclein could be a novel therapeutic strategy against PD.  相似文献   

13.

Background

Metal ions such as copper or zinc are involved in the development of neurodegenerative pathologies and metabolic diseases such as diabetes mellitus. Albumin structure and functions are impaired following metal- and glucose-mediated oxidative alterations. The aim of this study was to elucidate effects of Cu(II) and Zn(II) ions on glucose-induced modifications in albumin by focusing on glycation, aggregation, oxidation and functional aspects.

Methods

Aggregation and conformational changes in albumin were monitored by spectroscopy, fluorescence and microscopy techniques. Biochemical assays such as carbonyl, thiol groups, albumin-bound Cu, fructosamine and amine group measurements were used. Cellular assays were used to gain functional information concerning antioxidant activity of oxidized albumins.

Results

Both metals promoted inhibition of albumin glycation associated with an enhanced aggregation and oxidation process. Metal ions gave rise to the formation of β-amyloid type aggregates in albumin exhibiting impaired antioxidant properties and toxic activity to murine microglia cells (BV2). The differential efficiency of both metal ions to inhibit albumin glycation, to promote aggregation and to affect cellular physiology is compared.

Conclusions and general significance

Considering the key role of oxidized protein in pathology complications, glycation-mediated and metal ion-induced impairment of albumin properties might be important parameters to be followed and fought.  相似文献   

14.
The solubilities of bovine serum albumin and its two cyanogen bromide fragments comprising domain I and II+III of the protein in ammonium sulphate solution were studied at different pH and temperature and the salting-out parameters Ks and β were determined for the three proteins. The values of Ks and β obtained for the intact albumin at different pH were atypical of other globular proteins and were explained in terms of N-F transition and pH induced unfolding of the protein. The salting-out behaviour of the two fragments was, however, found to be significantly different from that of their parent molecule. In contrast to bovine serum albumin, the aqueous solubilities of the two fragments were highly dependent on temperature. Similarly, pH dependence of β for the two fragments was also different since it acquired a minimum value at about pH 4.0 as against its monotonic decrease with pH observed in intact albumin below pH 5.0. Anomalous salting-out behaviour of the two cyanogen bromide fragments has been attributed to the possible conformational changes that might occur during the course of their preparation under relatively harsher chemical conditions.  相似文献   

15.
Electron spin resonance spectra of the first Cu(II) complexes of human serum albumin, dog serum albumin, l-aspartyl-l-histidine N-methylamide and glycyl-glycyl-l-histidine N-methylamide have been studied using isotopically pure 65Cu in its chloride form. At 77° K, the esr spectra of Cu(II) complex of human serum albumin exhibited only one form of esr signal between pH 6.5 and 11. No intermediate forms were detected. The presence of an equally spaced nine-line superhyperfine structure with spacing ~15 G indicated considerable covalent bonding between Cu(II) and four nitrogen atoms derived from the protein. The esr spectrum form of Cu(II) bound to human serum albumin detected at neutral pH would be consistent with the participation of four nitrogens from the α-NH2 group, two peptide groups, and the imidazole group of a histidine residue. In contrast, the esr spectra of Cu(II)-dog serum albumin complex showed a transition from a low pH form to a high pH form as the pH was increased to 9.5. These spectral changes were found to be reversible upon lowering the pH. Ligand superhyperfine splittings in the low pH form of the esr signal of Cu(II)-dog albumin were not resolved. The distinct pH dependence of the esr signals observed in human and dog serum albumin complexes could be correlated to their respective optical spectra changes as a function of pH. At room temperature and in the pH range between 6 and 11, the esr spectra of Cu(II) complexes of l-aspartyl-l-alanyl-l-histidine N-methylamide and glycyl-glycyl-l-histidine N-methylamide exhibited a well-resolved nine-line superhyperfine structure indicating metal coordination with four equivalent nitrogen atoms of peptide.  相似文献   

16.
We report on the synthesis and properties of a new multimodal theranostic conjugate based on an anticancer fluorinated nucleotide conjugated with a dual-labeled albumin. A fluorine-labeled homocysteine thiolactone has been used as functional handle to synthesize the fluorinated albumin and couple it with a chemotherapeutic agent 5-trifluoromethyl-2′-deoxyuridine 5′-monophosphate (pTFT). The conjugate allows for direct optical and 19F magnetic resonance cancer imaging and release of the drug upon addition of glutathione. Interestingly, the pTFT release from albumin conjugate could only be promoted by the increased acidity (pH 5.4). The in vitro study and primary in vivo investigations showed stronger antitumor activity than free pTFT.  相似文献   

17.
Bordetella pertussis, B. parapertussis, and B. bronchiseptica cause respiratory infections in mammals, including humans, and are generally cultivated on Bordet‐Gengou (BG) agar plates in laboratories. The medium requires animal blood as a supplement for better bacterial growth. However, using blood is problematic, as its constant supply is occasionally difficult because of the limited shelf‐life. This study proposes modified BG agar plates supplemented with bovine serum albumin and fetal bovine serum as a simple and convenient medium that confers sufficient growth of bordetellae.  相似文献   

18.
H Jakubowski 《FASEB journal》1999,13(15):2277-2283
Homocysteine thiolactone, a cyclic thioester, is synthesized by certain aminoacyl-tRNA synthetases in editing or proofreading reactions that prevent translational incorporation of homocysteine into proteins. Although homocysteine thiolactone is expected to acylate amino groups in proteins, virtually nothing is known regarding reactivity of the thiolactone. Here it is shown that reactions of the thiolactone with protein lysine residues were robust under physiological conditions. In human serum incubated with homocysteine thiolactone, protein homocysteinylation was a major reaction that could be observed with as little as 10 nM thiolactone. Individual proteins were homocysteinylated at rates proportional to their lysine contents. Homocysteinylation led to protein damage, manifested as multimerization and precipitation of extensively modified proteins. Model enzymes, such as methionyl-tRNA synthetase and trypsin, were inactivated by homocysteinylation. Metabolic conversion of homocysteine to the thiolactone, protein homocysteinylation, and resulting protein damage may underlie involvement of Hcy in the pathology of vascular disease.-Jakubowski, H. Protein homocysteinylation: possible mechanism underlying pathological consequences of elevated homocysteine levels.  相似文献   

19.
Elevated concentration of homocysteine (Hcy) in human tissues, definied as hyperhomocysteinemia has been correlated with some diseases, such as cardiovascular, neurodegenerative, and kidney disorders. Homocysteine occurs in human blood plasma in several forms, including the most reactive one, the homocysteine thiolactone (HTL) - a cyclic thioester, which represents up to 0.29% of total plasma Hcy. In the article, the effects of hyperhomocysteinemia on the complex process of hemostasis, which regulates the flowing properties of blood, are described. Possible interactions of homocysteine and its different derivatives, including homocysteine thiolactone, with the major components of hemostasis such as endothelial cells, blood platelets, plasmatic fibrinogen and plasminogen, are also discussed. Modifications of hemostatic proteins (N-homocysteinylation or S-homocysteinylation) induced by Hcy or its thiolactone seem to be the main cause of homocysteine biotoxicity in hemostatic abnormalities. It is suggested that Hcy and HTL may also act as oxidants, but various polyphenolic antioxidants are able to inhibit the oxidative damage induced by Hcy or HTL. We also discuss the role of phenolic antioxidants in hyperhomocysteinemia -induced changes in hemostasis.  相似文献   

20.
Protein fouling is a critical problem for ultrafiltration. In this study, we adopted bovine serum albumin (BSA) as a model protein and polysulfone membrane as a typical ultrafiltration membrane. We then investigated the factors of the protein denaturation and aggregation, such as stirring shear stress and intermolecular exchange of disulfide during ultrafiltration, and discussed the BSA fouling mechanism. Fourier transform-infrared analysis revealed that magnetic stirring did not cause any difference in the secondary structural change of BSA gel-like deposits on the ultrafiltration membrane. BSA aggregates were collected from BSA gel-like deposits on the ultrafiltration membrane by centrifugation. Polyacrylamide gel electrophoresis in SDS analysis of BSA aggregates proved that the major binding of the BSA aggregates involved intermolecular disulfhydryl binding and that capping the free thiol group in BSA molecules with cysteine induced a remarkable decrease in the amount of the BSA aggregates during ultrafiltration. We concluded that one of the main factors in the BSA aggregation during ultrafiltration is the intermolecular exchange of disulfide through cysteinyl residue. We also found that the BSA aggregation caused a decrease in alpha-helix from 66% to 50% and an increase in beta-sheet from 20% to 36%, which was presumably because the cysteine residues associated with the intermolecular disulfide bonds had been located in alpha-helices. Copyright John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号