首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   22篇
  国内免费   11篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   3篇
  2019年   4篇
  2018年   4篇
  2017年   10篇
  2016年   8篇
  2015年   4篇
  2014年   15篇
  2013年   9篇
  2011年   2篇
  2010年   6篇
  2009年   8篇
  2008年   7篇
  2007年   8篇
  2006年   7篇
  2005年   6篇
  2004年   2篇
  2003年   1篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1999年   4篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有149条查询结果,搜索用时 218 毫秒
101.
Individuals of clonal plants consist of physically and physiologically connected ramets. In splitters, they are integrated for a time shorter than ramet generation time (i.e. the time it takes to produce the first offspring ramet), whereas in integrators connections between ramets persist for a longer time. It has been predicted that integrators should prevail in stressful environments, such as habitats poor in nutrients, whereas splitters are expected to dominate in benign habitats, such as fertile areas with a moderate climate. I tested these predictions in four dry mountain areas of the Trans-Himalaya, in high altitudes subjected to multiple stresses. In accordance with the expectations I found that clonal plants with integrated ramets reach higher mean and maximum altitudes than splitters. Integrators were over-represented in nutrient-poor habitats, such as dry semi-deserts, sandy steppes and in subnival habitats, whereas splitters preferentially colonised mesic habitats, saline sites and wetlands. While there was no difference in the representation of splitters and integrators in habitats with an unstable surface, such as screes, dunes and water bodies, fully integrated clonal plants preferred very stable environments, such as banks of streams covered by closed-canopy vegetation. Most relationships between clonal integration and environmental factors were explainable by the phylogenetic relationship between the species, only the significant preference of splitters for shaded environments persisted in phylogenetically corrected analysis. The results indicate that clonal integration belongs to a set of evolutionarily conservative plant traits, usually shared by related species. Consequently, the adaptive value of clonal integration in individual habitats remains questionable.  相似文献   
102.
As a major process affecting the reproductive success of birds, nest predation influences population density and dynamics and forces species to adapt to ecological and evolutionary time scales. The disentangling of potential natural and anthropogenic drivers of nest predation is crucial for the conservation of species. Thus, we investigated the effects of elevation, egg characteristics, vegetation structure and human activities on daily nest predation rates of artificial ground nests by baiting 700 artificial nests with quail eggs along an elevational gradient of about 1100 m. After 25 days, we found an overall daily nest predation rate of 0.045. Our generalized linear mixed model revealed increasing daily predation rates with increasing forest management, no impact of recreational activities, and lower daily predation rates in the vicinity of buildings. Furthermore, daily predation rates declined with increasing density of near-ground vegetation and increased with increasing tree cover. Finally, we found no influence of elevation, matching of egg and ground colouration, and dead wood on daily nest predation rates. Our results revealed that the risk of nest predation depends more on vegetation structure than on current levels of recreational activities. Moreover, the negative relation of nest predation risk and near-ground vegetation indicates that the changing forest structure after natural disturbances (e.g. wind throw or bark beetle infestation), which is tolerated within the benign neglect strategy applied by the authorities of protected areas, decreases the predation risk, whereas salvage logging increases this risk.  相似文献   
103.
A better understanding of growth-climate responses of high-elevation tree species across their distribution range is essential to devise an appropriate forest management and conservation strategies against adverse impacts of climate change. The present study evaluates how radial growth of Himalayan fir (Abies spectabilis D. Don) and its relation to climate varies with elevation in the Manaslu Mountain range in the central Himalaya. We developed tree-ring width chronologies of Himalayan fir from three elevational belts at the species’upper distribution limit (3750−3900 m), in the middle range (3500−3600 m), and at the lower distribution limit (3200−3300 m), and analyzed their associations with climatic factors. Tree growth of Himalayan fir varied synchronously across elevational belts, with recent growth increases observed at all elevations. Across the elevation gradient, radial growth correlated positively (negatively) with temperature (precipitation and standardized precipitation-evapotranspiration index, SPEI-03) during the summer (July to September) season. However, the importance of summer (July to September) temperatures on radial growth decreased with elevation, whereas correlations with winter (previous November to current January) temperatures increased. Correlations with spring precipitation and SPEI-03 changed from positive to negative from low to high elevations. Moving correlation analysis revealed a persistent response of tree growth to May and August temperatures. However, growth response to spring moisture availability has strongly increased in recent decades, indicating that intensified spring drought may reduce growth rates of Himalayan fir at lower elevations. Under sufficient moisture conditions, increasing summer temperature might be beneficial for fir trees growing at all elevations, while trees growing at the upper treeline will take additional benefit from winter warming.  相似文献   
104.
Species relative importance distribution pattern changes of the ground-beetle assemblages were analyzed along elevation strata of Tenerife Island. The species importance estimates were expressed in terms of (i) activity density, as total catching of ground-beetle adults obtained with pitfall traps over each elevation stratum for one year, and (ii) biomass, as the total number of specimens caught multiplied by a mean dry weight in milligrams for the species. The K-dominance curves indicated moderate or insignificant perturbances, and patterns were sigmoidal following a truncated log-normal slightly skewed to the right, by using the Kolmogoroff–Smirnov test. The results also showed perceptible deviations from the truncated log-normal pattern (p < 0.05) mainly with biomass data. The disturbance through successional progress and perturbances by environmental warming and cooling could be assumed by deviations from the log-normal distribution among species. Thus, assuming that the assemblages of strata exhibited generally low similarity, the results will be arranged around the following four tracks: (1) the assemblage progressed toward highest abundances, dominance and a low-diversity equilibrium state in the cloud montane stratum, (2) the assemblage was subject to severe warming and dryness, lowest abundances with dominance in biomass, such that log-normal pattern was not shown in the basal stratum, (3) a non-equilibrium state in summer-xeric montane stratum maintained the highest diversity and an archetypical log-normal pattern was described for assemblage, and (4) assemblage stressed by cold semi-arid climate showed a certain tendency to log-normality and decrease in the diversity for the summit stratum. These results indicate that variation in ground-beetle assemblages by way of advanced evolutionary and adaptive trade-offs can best be understood as consequences of selective pressures by adverse climatic changes – perturbances – or seasonal climatic fluctuations and population dynamics – disturbances – according to the elevation stratum, which can generate different deviations from the log-normal pattern; these are more directly related to magnitude and frequency of local natural disturbance regimes and the productivity of the ecosystem.  相似文献   
105.
中国西南山地是亚洲黑熊(Ursus thibetanus)的重要分布地,但是对该物种的活动模式研究很少。2017年7月—2019年8月,本研究以云南兰坪云岭省级自然保护区拉沙山区域亚洲黑熊为研究对象,按照250 m×250 m网格布设218台红外相机,累计有效拍摄日为36 175 d,共获得亚洲黑熊的独立照片(Independent Photograph,IP)77张。亚洲黑熊年节律为单峰型,主要活动在夏天雨季(5—10月),冬眠期为2—4月。日节律为晨昏活动类型,没有昼夜差异。拉沙山区域亚洲黑熊的主要活动海拔为3 100~3 400 m,没有垂直迁移。拉沙山亚洲黑熊活动区域主要植被类型是针阔混交林(50%),其次是常绿落阔叶混交林和针叶林(30%)。综合其他区域亚洲黑熊冬眠开始和持续时间,发现亚洲黑熊冬眠的开始时间和总时间存在纬度模式,高纬度区域冬眠开始时间早、持续时间长。研究结果在大尺度上揭示了亚洲黑熊的冬眠纬度模式,为该物种的保护管理提供参考。  相似文献   
106.
Rapoport's rule applied to an elevation gradient predicts a positive correlation between elevation ranges and elevation. This is supposed to be caused by the increasing magnitude of the climatic extremes at higher elevations, and thus, it is deduced that species richness should decrease with increasing elevation. The distribution of 614 tree species was used to test Rapoport's elevational rule along a gradient from 100 to 4300 m a.s.l., in the Nepalese Himalaya. The relationship between species richness and elevation was analysed by using generalized linear models (GLM). Generalized additive models (GAM) were used to examine the relationship between elevational range and the elevational mid-point of a species along the gradient. The widest elevation ranges are observed at mid-elevations, and narrow elevation ranges are observed at both ends of the gradient. This does not support Rapoport's elevation rule, as proposed by Stevens. There is a peak in species richness between 900 and 1000 m, and not in the tropical lowland as projected by Rapoport's elevation rule.  相似文献   
107.
Age, body size, and growth patterns in the subtropical anuran Hyla annectans chuanxiensis from high (Dengchigou Protection Station) and low (Lingguan Town) elevations in Baoxing County of Sichuan province (China) were described using skeletochronology. Females were significantly older than males at the low-elevation site, but there was no significant difference between the sexes at the high-elevation site. Age at sexual maturity of both males and females was 2 years at the high-elevation site, whereas males matured at 1 year and females at 2 years at the low-elevation site. Males and females from the low-elevation population reached a maximum age of 3 and 4 years, respectively, whereas males and females from the high-elevation population reached a maximum age of 4 and 5 years, respectively. At both sites, females were significantly larger than males. Females and males from the high-elevation population were larger than individuals from the low-elevation population. When the effect of age was controlled, the differences in body size of the two populations were significant only for females. Von Bertalanffy growth curves indicated that the growth rates in males was greater than in females in both populations. They also showed that the growth of both sexes slowed at an earlier age in the low-elevation population than in the high-elevation population. The findings suggest that age is a major factor underlying body size patterns for both sexes, but that the elevation of the locality affects the body size of females.  相似文献   
108.
武夷山典型植被类型土壤动物群落的结构特征   总被引:2,自引:0,他引:2  
选择武夷山不同海拔高度的4个典型植被群落(EVB,COF,DWF和ALM),对其土壤动物群落的结构和变化进行研究,结果表明,植被沿海拔梯度变化对土壤动物类群数、密度和多样性产生了显著的影响。不同海拔高度样地中,密度-类群DG多样性指数和土壤动物数量沿海拔高度上升呈显著递减趋势;数量占优势的土壤动物类群膜翅目(F=6.35,P0.001)、蜱螨目(F=9.25,P0.01)、弹尾目(F=5.93,P0.05)和鞘翅目(F=4.42,P0.05)的密度在不同海拔样地之间存在显著的差异。除高山草甸外,土壤动物群落在土层中的垂直分布呈明显"表聚现象"。但高山草甸的弹尾目、膜翅目、双翅目(幼虫)和等足目等类群较多地聚集在10-25cm土层。不同海拔高度土壤动物的类群总数和总个体数量表现为2种季节变化模式:(1)常绿阔叶林和针叶林秋季大量发生;(2)亚高山矮林和高山草甸夏季大量发生且数量接近。  相似文献   
109.
Question: Since increases in altitude and grazing intensity generally result in decreases in height growth of alpine grasslands, plant height may integrate effects of environmental stress and grazing disturbance and provide better assessments of the variation in root: shoot (R: S) biomass ratio than other variables. However, it is unclear if there is a general relationship between plant height and R:S ratio across grassland ecosystems. Such knowledge would be helpful for root biomass estimation in grasslands. Location: An altitudinal transect in the Gonghe Basin (2880–4040 m a.s.l.), northeast Tibetan plateau. Methods: We measured standing biomass both above‐ground and below‐ground, maximum plant height (MPH) and soil variables across 43 plots. Results: Climatic variables explained the variations in MPH and R: S ratio of undegraded grasslands better than soil variables (46–50% vs < 19%), while those of degraded grasslands generally showed insignificant correlations with climatic and soil variables. There was a general relationship between R: S ratio and MPH (negative, R2= 0.76, P< 0.001) across degraded and undegraded grasslands. The relationship was used to predict R: S ratio in 13 additional plots in steppe grasslands of Inner Mongolia, and good agreement of expected and observed values has been found (R2= 0.87, P < 0.001). Conclusions: MPH, that is relatively easy to measure, can be used to predict R:S ratio at plot to regional scales. It is promising to develop a new method for large‐scale estimation of root biomass in grasslands using MPH and shoot biomass avoiding tedious procedures of physical measuring of above and below‐ground biomass.  相似文献   
110.
Elevation, standing crop, disturbance and soil fertility often emerge from studies of freshwater plant communities as the dominant environmental factors determining both species richness and species composition. Few studies in North America have investigated the relationship between these factors and species abundance (standing crop) and species composition in the context of invasion by Phragmites australis. This study explores the influence of key abiotic and biotic variables on species abundance and composition across three Lake Erie wetlands differing in hydrology and Phragmites abundance in East Harbor, Ohio, USA. Standing crop for 92 species was related to standard sediment analyses, wave exposure, distance to shoreline, elevation, light interference, species density, and Phragmites standing crop in each of 95 1 × 1 m quadrats by using canonical correspondence analysis (CCA). Elevation (Axis I) and Phragmites standing␣crop-soil fertility (Axis II) explained 35.7 and 26.2%, respectively, of the variation in the species–environment relationships. Wave exposure was not a primary component of the first four canonical axes. Axis I was instrumental in describing species composition, separating wet meadow species from marsh species. Axis II was inversely related to species density for both wet meadow and marsh species. These findings generally support prevailing models describing the distribution of wetland plants along environmental gradients. Two discrepancies were noted, however: (1) species density was highest in the most sheltered sites and (2) wave exposure was directly associated with Phragmites standing crop-soil fertility gradient. The structural integrity of Phragmites stems, topographic heterogeneity and differential responses to anthropogenic disturbance may contribute to departure from prevailing multivariate models. This information has direct implications for local and regional wetland managers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号