首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   14篇
  国内免费   17篇
  2023年   2篇
  2022年   3篇
  2021年   1篇
  2020年   2篇
  2019年   8篇
  2018年   2篇
  2017年   5篇
  2016年   6篇
  2015年   6篇
  2014年   7篇
  2013年   8篇
  2012年   6篇
  2011年   7篇
  2010年   9篇
  2009年   6篇
  2008年   16篇
  2007年   8篇
  2006年   13篇
  2005年   5篇
  2004年   3篇
  2003年   10篇
  2002年   6篇
  2001年   5篇
  2000年   4篇
  1999年   4篇
  1998年   4篇
  1997年   3篇
  1996年   1篇
  1994年   2篇
排序方式: 共有162条查询结果,搜索用时 31 毫秒
81.
How much should an individual invest in immunity as it grows older? Immunity is costly and its value is likely to change across an organism's lifespan. A limited number of studies have focused on how personal immune investment changes with age in insects, but we do not know how social immunity, immune responses that protect kin, changes across lifespan, or how resources are divided between these two arms of the immune response. In this study, both personal and social immune functions are considered in the burying beetle, Nicrophorus vespilloides. We show that personal immune function declines (phenoloxidase levels) or is maintained (defensin expression) across lifespan in nonbreeding beetles but is maintained (phenoloxidase levels) or even upregulated (defensin expression) in breeding individuals. In contrast, social immunity increases in breeding burying beetles up to middle age, before decreasing in old age. Social immunity is not affected by a wounding challenge across lifespan, whereas personal immunity, through PO, is upregulated following wounding to a similar extent across lifespan. Personal immune function may be prioritized in younger individuals in order to ensure survival until reproductive maturity. If not breeding, this may then drop off in later life as state declines. As burying beetles are ephemeral breeders, breeding opportunities in later life may be rare. When allowed to breed, beetles may therefore invest heavily in “staying alive” in order to complete what could potentially be their final reproductive opportunity. As parental care is important for the survival and growth of offspring in this genus, staying alive to provide care behaviors will clearly have fitness payoffs. This study shows that all immune traits do not senesce at the same rate. In fact, the patterns observed depend upon the immune traits measured and the breeding status of the individual.  相似文献   
82.
SPE10 is an antifungal protein isolated from the seeds of Pachyrrhizus erosus. cDNA encoding a 47 amino acid peptide was cloned by RT-PCR and the gene sequence proved SPE10 to be a new member of plant defensin family. The synthetic cDNA with codons preferred in yeast was cloned into the pPIC9 plasmid directly in-frame with the secretion signal -mating factor, and highly expressed in methylotrophic Pichia pastoris. Activity assays showed the recombinant SPE10 inhibited specifically the growth of several pathogenic fungi as native SPE10. Circular dichroism and fluorescence spectroscopy analysis indicated that the native and recombinant protein should have same folding, though there are eight cystein residues in the sequence. Several evidence suggested SPE10 should be the first dimeric plant defensin reported so far.Nucleotide sequence data reported in this paper are available in the DDBJ/EMBL/GenBank database under accession number AY679170  相似文献   
83.
Puroindolines, for years largely investigated for their involvement in wheat kernel hardness, have recently attracted attention thanks to their possible role as antimicrobial proteins. With the aim to enhance our knowledge of these proteins we studied their localization in the kernel, and their antimicrobial activity in vitro against six different bacterial strains. Immunolocalization showed that both the PINs are strongly concentrated in the aleurone layer, but also highly present in the endosperm. Interestingly we observed that puroindolines not only have the same spatial distribution in the kernel, they are also always found co-localized. Their co-localization suggests that they could cooperate in defending the plant against pathogens. We therefore tested antimicrobial activity of PINA and PINB, and a putative synergism between these proteins. The results showed that the two polypeptides can in vitro inhibit growth of all the bacteria tested; furthermore when combined together they are able to enhance each other’s toxicity. In view of their antimicrobial activity and of their natural presence in Triticum aestivum wheat flour, puroindolines look promising antibacterial agents and thus deserve further studies aimed at establishing their possible future applications in fields of food and health care. Since PINs were still detectable in bakery products, these proteins may be promising tools in investigating natural ways of food preservation.  相似文献   
84.
Heavy metal pollutants such as Cd, Hg, Pb, As, and Se are considered as both a global problem and a growing threat to the humanity. Being strongly poisonous to the metal-sensitive enzymes and leading to the growth inhibition and death of organisms, these metals have a toxic impact on the plants and animals. Inducing the metal-binding cysteine-rich peptides such as metallothioneins, phytochelatins, and defensins, higher organisms like plants and animals usually react to the heavy metal stress. In this study, a recombinant defensin protein was expressed in bean and its ability in the cadmium absorption was determined. Experimental studies revealed that this protein was able to absorb cadmium ions in reduced form more than oxide one. Molecular dynamics simulations were carried out in order to evaluation of experimental studies, using a model of Cd2+ or Na+ and Cl ions enclosed in a fully hydrated simulation box with the recombinant defensin. The theoretical results also suggested that the reduced recombinant defensin was more powerful in the absorption of Cd2+ than its oxide form. The present study is the first report of Cd2+ absorption potential of this new reduced recombinant defensin. The results unraveled that this recombinant defensin can be adopted as a molecular switch in the cadmium pollution of the environment and also the important role of sulfur groups in the absorption of cadmium ions.  相似文献   
85.
一类新型的抗菌活性肽——生物防御素(Defensin)   总被引:1,自引:0,他引:1  
童青春  吉永华 《生命科学》1999,11(3):117-120
生物防御素(defensin)是近年来发现的一组新型抗菌活性肽。它们通常都是由35~50个氨基酸残基组成,且分子内富含二硫键。由于其具有牢固的分子骨架、广泛的分布以及生物活性功能,因而对它们的研究已成为当前国际学术界中一个引人关注的研究热点。本文将简述有关生物防御素的分布、分子结构特征、生物活性及其可能的作用机制等方面的研究概括及展望。  相似文献   
86.
Antimicrobial peptides play important roles in the innate immune system of various organisms, and they may also be considered to prevent the organisms from infections. In particular, β‐defensins, mainly produced in epithelial cells, are recognized as one of the major antimicrobial peptides in mammals, including humans. In this study, we showed that Lactobacillus helveticus SBT2171 (LH2171), one of the several species of lactic acid bacteria, upregulates the production of β‐defensins in oral epithelial cells in vitro. Moreover, LH2171 reduced the increase of proinflammatory cytokine expression, induced by Porphyromonas gingivalis stimulation, in gingival epithelial cells. These data suggested that LH2171 suppresses P. gingivalis‐induced inflammation by upregulating the expression of β‐defensins in gingival epithelial cells. We subsequently investigated the effects of LH2171 in vivo and revealed that β‐defensin expression was increased in the oral cavities of LH2171‐fed mice. Furthermore, LH2171 decreased alveolar bone loss, gingival inflammation, and amounts of P. gingivalis‐specific 16S ribosomal RNA in the gingiva of P. gingivalis‐inoculated mice. Taken together, our results showed that LH2171 upregulates the expression of β‐defensins in oral cavity, thereby decreasing the number of P. gingivalis consequently ameliorating the experimental periodontal disease.  相似文献   
87.

The ability of Rhizoleen-T and Rhizoleen-B to suppress the roots’ diseases of cucumber caused by Fusarium oxysporum and Rhizoctonia solani and induction of the plant defence system was evaluated. The results showed a significant suppression in damping-off and root rot of cucumber when the two biofungicides were applied. They increased the surviving percentage of the treated plants to 98.0% and reduced the mean disease rating to 1.0. The biofungicides significantly enhanced the plant’s morphology and physiology when compared with either infected or non-infected control. The mechanism of action of the biofungicides is could be through the enhancement of the plant defences, in addition to their antifungal effect. They stimulated the defence of the plants by increasing the content of proline and phenols and induction the defensin genes. Biofungicides induced defence genes in the 50-day-old treated plants. The biofungicides are effective, cost effective and applicable in the control of root diseases of cucumber.  相似文献   
88.
Plant defensins are small cysteine‐rich peptides that inhibit the growth of a broad range of microbes. In this article, we describe NmDef02, a novel cDNA encoding a putative defensin isolated from Nicotiana megalosiphon upon inoculation with the tobacco blue mould pathogen Peronospora hyoscyami f.sp. tabacina. NmDef02 was heterologously expressed in the yeast Pichia pastoris, and the purified recombinant protein was found to display antimicrobial activity in vitro against important plant pathogens. Constitutive expression of NmDef02 gene in transgenic tobacco and potato plants enhanced resistance against various plant microbial pathogens, including the oomycete Phytophthora infestans, causal agent of the economically important potato late blight disease, under greenhouse and field conditions.  相似文献   
89.
家蝇抗菌肽Defensin基因同向串联表达载体的构建和鉴定   总被引:2,自引:0,他引:2  
目的:构建家蝇抗菌肽Defensin基因多拷贝串联体,并克隆到甲醇酵母分泌表达载体pPIC9K上。方法:PCR法扩增家蝇抗菌肽Defensin基因成熟肽片断,目的片断的上游5′端带有EcoRⅠ和NheⅠ位点,下游5′端带有NotⅠ和XbaⅠ位点,目的片断首先克隆入pMD18-T载体,利用pMD18-T载体的NdeⅠ位点和目的片断上的一对同尾酶(NheⅠ和XbaⅠ),多次酶切连接,串联成多拷贝的Defensin成熟肽基因,再用EcoRⅠ和NotⅠ双酶切,最后克隆入甲醇酵母分泌表达载体pPIC9K。结果:PCR鉴定、酶切鉴定和DNA测序证明多拷贝基因重组质粒构建成功。结论:该方法能方便高效地获得所需的多拷贝基因,为进一步进行高效表达打下基础。  相似文献   
90.
家蝇抗菌肽Defensin基因在COS-7细胞中的瞬时表达   总被引:3,自引:0,他引:3  
目的:研究家蝇抗菌肽Defensin cDNA在非洲绿猴肾细胞株COS-7中的表达情况,并对表达产物的抗菌作用进行初步检测。方法:以Defensin基因为模板设计特异性引物,扩增在C端含6×His标签的Defensin开放阅读框序列,将此序列与真核表达载体pcDNA3.1( )进行重组,构建重组质粒pcDNA3.1( )/Defensin-His 6。以阳离子脂质体LipofectamineTM2000为载体,对宿主细胞COS-7进行重组质粒pcDNA3.1( )/Defensin-His 6和空载体pcDNA3.1( )的转染,72h后收集细胞培养上清液,表达产物经His-Trap HP亲合层析柱分离纯化和Western blotting鉴定后,进行杀菌活性的初步检测。结果:重组质粒pcDNA3.1( )/Defensin-His 6组细胞培养上清液的纯化物,行Western blotting得到了分子量大小约为10.0kD的单一目的条带,与预期相符;杀菌活性试验中发现:该纯化物对大肠杆菌E.coliK12D31具有一定的杀菌活性。结论:家蝇抗菌肽Defensin基因在宿主细胞COS-7中得到了正确表达。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号