首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   647篇
  免费   21篇
  国内免费   8篇
  2023年   4篇
  2022年   4篇
  2021年   6篇
  2020年   17篇
  2019年   4篇
  2018年   10篇
  2017年   12篇
  2016年   11篇
  2015年   8篇
  2014年   26篇
  2013年   27篇
  2012年   53篇
  2011年   77篇
  2010年   28篇
  2009年   82篇
  2008年   65篇
  2007年   49篇
  2006年   39篇
  2005年   27篇
  2004年   27篇
  2003年   29篇
  2002年   15篇
  2001年   14篇
  2000年   4篇
  1999年   10篇
  1998年   9篇
  1997年   5篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   5篇
  1989年   1篇
  1987年   1篇
排序方式: 共有676条查询结果,搜索用时 593 毫秒
51.
In this paper, a series of nano-hydroxyapatite(n-HA)/chitosan cross-linking composite membranes (n-HA; 0, 5, 10, 15, 20 and 30 wt%) were successfully developed by a simple casting/solvent evaporation method. n-HA with size about 20 nm in vertical diameter and about 100 nm in horizontal diameter was successfully synthesized by a hydro-thermal precipitation method, and then dispersed into chitosan/genipin solution with the aid of continuous ultrasound to develop n-HA/chitosan cross-linking composite membranes. The detailed characterizations including Fourier transform infrared spectroscopy (FTIR), X-ray diffractometer (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), water adsorption and tensile test were performed. With the analysis of FTIR spectra and TGA spectra, it suggested that there was existence of possible interactions between polymer and n-HA. Meanwhile, the n-HA content was greatly effected on the morphology as well as the tensile property of composite membrane. In vitro cytotoxicity test suggested that the developed n-HA/chitosan cross-linking composite membrane was non-cytotoxicity against L929 cells after 24 h's incubation might be suitable for further in vivo application.  相似文献   
52.
A new method for the determination of the degree of N-acetylation (DA) of chitin and chitosan is described using first derivative diamond ATR FTIR spectroscopy. Applying the derivative values of the amide III band at 1327 cm−1 and the CH deformation band of the N-acetyl group at 1383 cm−1 as measure of the N-acetyl content of the sample in relation to the derivative value of the bridge oxygen vibration at 1163 cm−1 as internal standard, a linear correlation to the results of first derivative UV spectroscopy was obtained and confirmed by elemental analysis and Raman spectroscopy. The described method allows the determination of the degree of N-acetylation of chitosan and chitin in the presence of water thus making drying procedures unnecessary.  相似文献   
53.
Two different molecular weights of chitosan were pulverized to nanopowders by ultrafine milling. The nanopowders were characterized by viscometry small angle X-ray scattering (SAXS), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), FT-IR spectroscopy and UV-vis spectroscopy. Our results showed that ultrafine milling effectively reduced the particle size of chitosan to a nanoscale. The viscosity average molecular weight (Mv) of chitosan was decreased by the milling treatment. The crystalline structure of chitosan was destroyed by the milling since the nanopowder exhibited an amorphous XRD pattern. In addition, thermal stability of the low molecular weight chitosan was decreased after the milling treatment. FT-IR and UV-vis spectra showed that the milling process did not cause significant changes in the chemical structure of chitosan.  相似文献   
54.
55.
By dynamic light scattering in combination with fluorescence spectroscopy and TEM it was shown that aggregation in aqueous solutions is inherent not only to chitosan, but also to two other water-soluble derivatives of chitin: O-carboxymethylchitin and di-N,N-carboxymethylchitosan. Aggregation is observed even for the samples without N-acetyl-d-glucosamine units, which remain upon incomplete chemical modification of chitin, indicating that specific interactions between residual chitin repeat units cannot be the main reason for the aggregation. At the same time, 7 M urea weakens the aggregation, thus testifying that hydrogen bonding and/or hydrophobic interactions are partially responsible for this phenomenon. The incomplete disruption of aggregates in 7 M urea may arise from crystallization of junction zones between different macromolecules, which makes some hydrogen bonds inaccessible for urea or too stable for breaking by this agent.  相似文献   
56.
The solution plasma system was introduced to treat chitosan solution in order to prepare low molecular weight chitosan. The plasma treatment time was varied from 0 min to 300 min. The plasma-treated chitosan was characterized including viscosity, molecular weight by GPC, and chemical characteristics by FT-IR. The results showed that after treated with plasma for 15-60 min, the viscosity of chitosan solution and apparent molecular weight of chitosans were remarkably decreased, compared to those of untreated sample. Longer treatment time had less effect on both viscosity and molecular weight of samples. Eventually, long treatment time (≥180 min) showed no influence on both viscosity and apparent molecular weight. This suggested that the degradation process of chitosan occurred during plasma treatment. FT-IR analysis revealed that chemical structure of chitosan was not affected by solution plasma treatment. TOF-MS results showed that chitooligosaccharides with the degree of polymerization of 2-8 were also generated by solution plasma treatment. The results suggested that solution plasma system could be a potential method for the preparation of low molecular weight chitosan and chitooligosaccharides.  相似文献   
57.
Two mucoadhesive thiolated polymers were synthesized by the covalent attachment of homocysteine thiolactone (HT) to chitosan and N,N,N-trimethyl-chitosan (TM-chitosan) at various chitosan:HT ratios. The amount of thiol and disulphide groups immobilized on the chitosan influenced the polymer's mucoadhesion positively and negatively, respectively, with the optimal chitosan:HT (w/w) ratio being found to be 1:0.1. The interaction between mucin and chitosan and its three derivatives was highest for the thiolated chitosan derivatives but was pH dependent. HT-chitosan and TM-HT-chitosan, with the thiol groups of 64.15 and 32.48 μmol/g, respectively, displayed a 3.67- and 6.33-fold stronger mucoadhesive property compared to that of the unmodified chitosan at pH 1.2, but these differences were only ∼1.7-fold at pH 6.4. The swelling properties of TM-HT-chitosan and HT-chitosan were higher than that of chitosan and TM-chitosan, attaining a swelling ratio of up to 240% and 140%, respectively, at pH 1.2 within 2 h.  相似文献   
58.
目的:制备了壳聚糖Zn2+固定化亲和层析填料,并对其性能进行了研究。方法:采用反相悬浮法制备了交联壳聚糖;再以环氧氯丙烷为活化剂,乙二胺为螯合配基,制备了固定化亲和层析填料;表征了其有效粒径以及均匀系数、含水量、失重率、氨基含量、骨架密度、堆积密度以及孔度值。从时间、加入ZnCl2的浓度、温度、pH方面对Zn2+固定化条件进行了优选,并确定了Zn2+的固定化量。含组氨酸标签的乙醛脱氢酶粗酶液,经硫酸铵盐析后,考察了壳聚糖Zn2+固定化亲和层析填料的亲和性能。结果:制备的填料有效粒径为105μm;均匀系数为1.46;含水量为58.03%;失重率为85.43%;氨基含量为9.20mmol/g;骨架密度为1.217 8g/ml;堆积密度为0.843 2g/ml;孔度值为36.40%。固定化Zn2+的最佳条件是:时间3 h、加入ZnCl2溶液浓度0.1mol/L、温度28℃、pH 5.5;且此条件下,亲和层析填料中Zn2+固定化量为3.35mmol/g。壳聚糖Zn2+固定化亲和层析填料对乙醛脱氢酶的亲和性能为4.14IU/g(干重)。结论:制备了壳聚糖Zn2+固定化亲和层析填料,可用于带有组氨酸标签重组蛋白的快速分离与纯化。  相似文献   
59.
目的总结水溶性壳聚糖抗菌生物医用膜凝胶剂(商品名:凯舒林)对人体II度烧伤创面的治疗作用和安全性,并探索后期创面色素沉着、瘢痕增殖的机制。方法选择II度烧伤患者60例,用药前均用生理盐水清洁创面、去腐皮,于创面上均匀涂壳聚糖抗菌生物医用膜治疗,观察记录创面成痂、止痛、感染及痂下愈合时间,追踪随访6个月后创面色素沉着及瘢痕增殖程度。结果本组60例使用壳聚糖抗菌生物医用膜治疗的烧伤患者,创面全部自行愈合。治愈时间:浅Ⅱ度患者平均8.5 d;深Ⅱ度患者平均19 d。创面愈合后随访6个月,浅Ⅱ度创面患者3个月内有轻度色素改变,3个月后逐步恢复正常;深Ⅱ度创面患者3个月后部分患者有散在的点样色素脱失改变;部分患者有散在的扁平瘢痕。随访6个月,创面色素沉着和瘢痕增生程度明显减轻,功能明显改善,未见瘢痕疙瘩增殖。结论壳聚糖抗菌生物医用膜用于烧伤创面具有良好的组织相容性,止痛效果好,创面成痂快,兼有控制创面感染,促进愈合,减轻瘢痕增殖的作用,无明显不良反应,安全性好。  相似文献   
60.
Legal restrictions, high costs and environmental problems regarding the disposal of marine processing wastes have led to amplified interest in biotechnology research concerning the identification and extraction of additional high grade, low-volume by-products produced from shellfish waste treatments. Shellfish waste consisting of crustacean exoskeletons is currently the main source of biomass for chitin production. Chitin is a polysaccharide composed of N-acetyl-D-glucosamine units and the multidimensional utilization of chitin derivatives including chitosan, a deacetylated derivative of chitin, is due to a number of characteristics including: their polyelectrolyte and cationic nature, the presence of reactive groups, high adsorption capacities, bacteriostatic and fungistatic influences, making them very versatile biomolecules. Part A of this review aims to consolidate useful information concerning the methods used to extract and characterize chitin, chitosan and glucosamine obtained through industrial, microbial and enzymatic hydrolysis of shellfish waste.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号