首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
以自制的壳聚糖微球为载体,环氧氯丙烷(ECH)为活化剂,亚氨基二乙酸(IDA)为螯合配基,Zn2+为螯合金属离子制备壳聚糖-Zn(II)亲和层析介质。最佳活化工艺:M壳聚糖(g)∶VECH(m L)为1∶4、Na OH浓度为1.2 mol/L、活化温度为50℃,活化时间为4 h,测得环氧基修饰密度达0.2472 mmol/g;最佳螯合工艺:IDA作为配基、浓度为0.6 mol/L、反应温度为70℃、反应时间为6 h,Zn Cl2作为螯合金属盐、浓度为0.1 mol/L、反应时间为3 h,Zn2+螯合量达到最大值。通过红外光谱表征,证明壳聚糖与Zn(II)发生了螯合配位反应,生成了壳聚糖-Zn(II)配合物。  相似文献   

2.
以琼脂粉为基质制备金属螯合载体,并用于固定重组腈水解酶。研究发现:制备金属螯合载体最合适的金属离子为Zn2+。当Zn2+离子浓度0.3 mol/L、给酶量15.6 mg/g、固定化pH 8.0、固定化温度40℃时,制得的固定化酶活性最高。固定化酶最适反应温度为50℃、最适反应pH为7.0。当扁桃腈浓度为10 mmol/L、反应1 h时,固定化酶最大产率为0.041 mmol/(g·h);在反应12 h时,产物e.e.值可达到99%以上。固定化酶重复使用8次以后,酶活力仍保持在45%。  相似文献   

3.
目的:以戊二醛交联壳聚糖微球为载体,通过共价连接反应固定化β-葡萄糖苷酶.方法:以固定化酶比活和酶活回收率为目标,采用单因素方法优化固定化工艺、微球制备条件.结果:微球最佳制备条件:2.5%壳聚糖,2%乙酸,7.5%氢氧化钠,氢氧化钠:乙醇(v/v)=1:1.最佳固定化工艺为:0.1g壳聚糖微球在20mL 3%戊二醛溶液中50℃交联2h.加酶量为7 388mU/g干球,25℃吸附24h.固定化酶比活为6 188mU/g干球,酶活回收率为95.4%.结论:交联壳聚糖微球共价连接法可有效固定化β-葡萄糖苷酶.  相似文献   

4.
[目的]制备出含Cu2+的琼脂糖-IDA螯合载体及对其固定糖化酶工艺条件进行优化.[方法]利用金属螯合配体(IDA-Cu2+)与蛋白质表面供电子氨基酸相互作用的原理制备载体,采用紫外分光光度法测定不同影响因素下固定化糖化酶的酶活.[结果]Cu2+的加入量和固定化过程的酸度比给酶量对固定化糖化酶的活性影响还要大,在给酶量80 mg/g载体、1.0× 10-2 mol Cu2+/g载体、pH 4.6和固定化4h的固定化条件下,固定化酶活为252.1 U/g,重复使用5次后酶活为首次固定化酶活的65.1%.[结论]该Cu2+-IDA-金属螯合琼脂糖可用于淀粉水解糖化酶的优良固定化载体材料.  相似文献   

5.
金属螯合载体定向固定化木瓜蛋白酶的研究   总被引:11,自引:1,他引:10  
以磁性金属螯合琼脂糖微球为载体,利用金属螯合配体(IDACu2+)与蛋白质表面供电子氨基酸相互作用的原理,定向固定了木瓜蛋白酶。固定化最适条件为Cu2+1.5×10-2mol/g载体、固定化时间4h、固定化pH7.0、给酶量30mg/g载体。固定化酶的最适反应温度70℃、最适反应pH8.0,固定化酶的热稳定性明显高于溶液酶,固定化酶活力回收为68.4%,且有较好的操作稳定性,载体重复使用5次后固定化酶酶活为首次固定化酶79.71%。  相似文献   

6.
氧化亚铁硫杆菌固定化技术研究   总被引:10,自引:1,他引:9  
在生物脱硫过程中 ,以H - 2软性填料作为氧化亚铁硫杆菌 (Thiobacillusferrooxidans)的固定化载体 ,构建了固定床生化反应器。考察了不同稀释率固定下床生化反应器氧化Fe2 + 的情况 ,在通气量为 330L/h ,稀释率为 0 6h-1条件下 ,Fe2 + 最大氧化速率达 7 6 7g[Fe2 + ]/L·h。该反应器连续运行 10 0d,固定化细胞稳定性良好  相似文献   

7.
壳聚糖固定化半纤维素酶的研究   总被引:14,自引:0,他引:14  
从青霉菌m8提取出半纤维素酶,将其固定在用戊二醛交联的壳聚糖载体上.0.5 g壳聚糖与4%的戊二醛结合固定2.5 mg蛋白质,酶活回收率为45.6%. 原酶的最适pH为4.6,固定化酶为pH 3.6.原酶的最适温度为55℃,固定化酶在60~75℃都具有较高活性.固定化酶的耐热性优于原酶. 以半纤维素为底物,固定化酶的表观Km值略低于原酶,前者为5.0×10-2 g/L,后者为3.58×10-2 g/L.  相似文献   

8.
曹文娟  袁海生 《菌物学报》2016,35(3):343-354
采用壳聚糖交联法和海藻酸钠-壳聚糖包埋交联法固定化桦褶孔菌产生的漆酶,探讨最佳固定化条件,固定化漆酶的温度,pH稳定性及操作稳定性,并以两种固定化酶分别对4种染料进行了降解.结果表明:(1)壳聚糖交联法固定化漆酶的最佳条件为:壳聚糖2.5%,戊二醛7%,交联时间2h,固定化时间5h,给酶量1g壳聚糖小球:1mL酶液(1U/mL),固定化效率56%;(2)海藻酸钠-壳聚糖包埋交联法固定化漆酶的最佳条件为:海藻酸钠浓度4%,壳聚糖浓度0.7%,氯化钙浓度5%,戊二醛浓度0.6%,给酶量4mL 4%海藻酸钠:1mL酶液(1U/mL),固定化效率高达86%;(3)固定化的漆酶相比游离漆酶有更好的温度和pH稳定性;(4)比较两种固定化漆酶,海藻酸钠-壳聚糖包埋交联法固定化酶的温度及酸度稳定性要优于壳聚糖固定化酶,但可重复操作性要弱于后者,两者重复使用8次后的剩余酶活比率分别为71%及64%;(5)两种固定化酶对所选的4种不同结构的合成染料均有较好的降解效果,其中壳聚糖固定化酶对茜素红的降解效果及重复使用性极佳,重复降解40mg/L的茜素红10次,降解率仍保持在100%.  相似文献   

9.
不同载体固定化胰蛋白酶酶学特性的研究   总被引:4,自引:0,他引:4  
目的:研究以壳聚糖、复合硅胶、阴离子交换树脂为载体固定化胰蛋白酶的酶学特性。方法:通过测定不同载体固定化胰蛋白酶的活力得其最适反应温度值、最适反应pH值和米氏常数(Km)值。结果:以壳聚糖、复合硅胶、阴离子交换树脂为载体制备固定化胰蛋白酶的最适反应温度分别为70℃、60℃、60℃;最适反应pH值分别为7.5、8.0、8.0;表观米氏常数K’m分别为22.72mg/ml、25.12mg/ml、29.04mg/ml。结论:与游离酶相比,固定化胰蛋白酶均表现出一定的热稳定性、酸碱稳定性,利于工业化生产。  相似文献   

10.
为了探究固定化微绿球藻(Nannochloropsis oculata)去除污水中NH4+-N、PO43--P的效果,采用海藻酸钠固定化包埋技术进行实验。开展了固定化藻球大小、藻细胞包埋密度、藻球投放质量及充气培养条件对NH4+-N、PO43--P去除效果的单因子试验研究。结果表明,固定化藻球大小、藻细胞包埋密度、藻球投放质量和充气培养条件对NH4+-N、PO43--P的去除效果影响显著(P0.05)。藻球直径3.5 mm时生长速率(K)值最大(0.3320.002),同时NH4+-N、PO43--P去除率效果最佳,分别为(75.083.83)%和(80.803.81)%;藻细胞包埋密度100104 cells/ball时K值最大(0.3300.033),而NH4+-N、PO43--P去除率则以藻细胞包埋密度300104 cells/ball组为佳,分别达(87.200.43)%和(82.581.72)%,但考虑单位藻细胞去除率,包埋密度以100104 cells/ball为宜;随着藻球用量的增加K值下降,10 g/L组K值最大(0.3010.02)、50 g/L组K值最小(0.1930.01),投放量30和50 g/L时NH4+-N去除率较高分别为(84.120.78)%和(84.630.45)%,30 g/L组PO43--P去除率最高达(77.131.43)%。综合考虑,藻球投放量选用30 g/L为宜;充气条件培养K值、NH4+-N和PO43--P去除率显著(P0.05)高于不充气,K值分别为(0.3060.006)和(0.1770.010);NH4+-N去除率分别为(85.930.45)%和(49.320.45)%;PO43--P去除率分别为(66.665.00)%和(46.292.12)%。研究优化了微绿球藻固定化条件:固定化微绿球藻应进行充气培养,藻球规格3.5 mm、藻细胞包埋密度100104 cells/ball、藻球投放量30 g/L。  相似文献   

11.
改性与修饰壳聚糖固定化酶纯化抑肽酶研究   总被引:9,自引:1,他引:8  
采用化学改性与修饰微珠壳聚糖为载体,共价法偶联牛胰蛋白酶,制成抑肽酶亲和吸附剂,单位活力5 190 KIU/g(湿),蛋白质偶联率60.5%,酶活性回收率55%;将其直接亲和层析牛肺提取液,分离纯化高比活抑肽酶.方法过程简单,样品比活力5 700 KIU/mg,质量稳定,成本较低;该吸附剂机械强度高,抗污染能力较强,非特异性吸附较小,可以反复使用,价格低廉,适合工业化生产.  相似文献   

12.
壳聚糖固定化酶一步纯化抑肽酶研究   总被引:2,自引:0,他引:2  
采用化学改性与修饰微珠壳聚糖为载体,共价法偶联牛胰蛋白酶,制成抑肽酶亲和吸附剂,单位活力5190KIU/g(湿),蛋白偶联率60.5%,酶活性回收率55%;将其直接亲和层析牛肺提取液,分离纯化高比活抑肽酶。方法过程简单,样品比活力5700KIU/mg,质量稳定,成本较低;该吸附剂机械强度高,抗污染能力较强,非特异性吸附较小,可以反复使用,价格低廉,适合工业化生产。  相似文献   

13.
Terpolymer bead particles (100-350 microm in diameter) were prepared by suspension radical polymerization from methacrylate esters [2,3-epoxypropyl methacrylate (GMA), 2-(2-hydroxyethoxy)ethyl methacrylate (DEGMA) and ethylene dimethacrylate (EDMA)] and subsequently derivatized affording iminodiacetic acid (IDA) chelating sorbents. The sorbents differed in pore volumes (0-0.7 cm3/g) and specific surface areas (0.03-9.8 m2/g) of their matrices as well as in the amounts of immobilized Ni2+-IDA complexes (0.03-1.58 mmol/g). The binding of imidazole was studied by frontal chromatography to evaluate the accessibility of Ni2+-IDA complexes. It was found that an increase in the bonded imidazole content with increasing immobilized Ni2+-IDA concentration was strongly dependent on the matrix morphology. A higher pore volume of the matrix significantly improved the utilizability of Ni2+-IDA complexes for imidazole binding. The performance of the sorbents based on two porous matrices with immobilized Ni2+-IDA concentration (0.1-1.58 mmol/g) differing in pore size distributions was compared in immobilized metal affinity chromatography (IMAC) of monoclonal mouse immunoglobulin IgG1 specific against human choriogonadotropic hormone (GTH-spec IgG1). The results have shown that sorbents based on matrix with large pores (up to 20 microm in diameter) exhibited high protein binding capacities. The GTH-spec IgG1 (Mw=158,000) was eluted from all the sorbents in its native form as was confirmed by MALDI-TOF.  相似文献   

14.
Rabbit liver arylsulfatase A (arylsulfatase sulfohydrolase, EC 3.1.6.1) monomer was immobilized on cyanogen bromide-activated Sepharose-6MB and on Affi-Gel-10 under various experimental conditions in order to study the effects of variables in sulfatase monomer/oligomer subunit affinity chromatography. First, the number of reactive groups on activated Sepharose-6MB and Affi-Gel-10 was determined by a procedure involving spectrophotometric titration with L-tyrosine. After covalent coupling of sulfatase monomers to the gels, the enzyme binding capacities of the sulfatase subunit affinity gel matrixes were determined at pH 4.5. The maximum binding of free monomers from solution could be achieved when the Affi-Gel-10 protein monomer matrix was prepared at low degrees of covalent loading. The introduction of a batch technique for equilibration of the protein sample with the monomer affinity matrix also increased the efficiency of the subunit affinity gel in purification procedures. The effect of pH on the stability of the heterodimers formed between monomers of rabbit liver arylsulfatase A immobilized on Affi-Gel-10 and free monomers of arylsulfatase A enzymes from different tissues and organisms was studied using the batch technique. For all sulfatase A enzymes tested, the midpoint of the pH transition for subunit association was pH 6.2, suggesting that the amino acid residues involved in the dimerization are similar. The versatility of the Affi-Gel-10 monomer affinity matrix was further demonstrated by purifying 13 mammalian arylsulfatase A enzymes to homogeneity, as assessed by Sephacryl chromatography, native and SDS gel electrophoresis. The molecular weights of the homogeneous monomers and their peptide subunits were in the range of 110-180 KDa and 50-64 KDa, respectively. The amino acid compositions of these enzymes were also determined.  相似文献   

15.
The technique of analytical affinity chromatography was extended to characterize binding of ions and hydrophobic probes to proteins. Using the immobilized protein mode of chromatography, alpha-lactalbumin and kappa-casein were covalently attached to 200-nm-pore-diameter controlled-pore glass beads and accommodated for high-performance liquid chromatography. The existence of a high affinity binding site (Kdiss = 0.16 microM) (site I) for calcium ion in alpha-lactalbumin was confirmed by chromatography of [45Ca2+]. In addition, chromatography of the hydrophobic probes, 1-(phenylamino)-8-naphthalene-sulfonate (ANS)2 and 4,4'-bis[1-(phenylamino)-8-naphthalenesulfonate (bis-ANS) indicated that Ca2+ bound to a second site (presumably the zinc site or site II) with weaker affinity. Dissociation constants obtained for apo-alpha-lactalbumin were about 80 microM for ANS and 4.7 microM for bis-ANS in the absence of sodium ion. Addition of Ca2+ initially caused a reduction in surface hydrophobicity (lowered affinity for the probe dyes) followed by an increase at higher Ca2+ concentrations (greater than 0.5 mM), suggesting that occupancy of site II restores an apo-like conformation to the protein. Moreover, the effect of Zn2+ was similar to that observed in the higher Ca2+ concentration range, whereas Na+ apparently bound to site I. A calcium binding site of moderate affinity also exists in kappa-casein (Kdiss = 15.6 microM). A cluster of negative charges, probably including the orthophosphate group, most likely comprise this binding site. By preventing self-association, analytical affinity chromatography permits microscale characterization of ligand equilibria in proteins that are unaffected by protein-protein interactions.  相似文献   

16.
We have utilized iminodiacetate (IDA) gels with immobilized Zn2+, Cu2+ and Ni2+ ions to evaluate the metal binding properties of uterine estrogen receptor proteins. Soluble (cytosol) receptors labeled with [3H]estradiol were analyzed by immobilized metal affinity chromatography (IMAC) before as well as after (1) 3 M urea-induced transformation to the DNA-binding form, and (2) limited trypsin digestion to separate the steroid- and DNA-binding domains. Imidazole (2-200 mM) affinity elution and pH-dependent (pH 7-3.6) elution techniques were both evaluated and found to resolve several receptor isoforms differentially in both the presence and absence of 3 M urea. Individual receptor forms exhibited various affinities for immobilized Zn2+, Cu2+ and Ni2+ ions, but all intact receptor forms were strongly adsorbed to each of the immobilized metals (Ni2+ greater than Cu2+ much greater than Zn2+) at neutral pH. Generally, similar results were obtained with IDA-Cu2+ and IDA-Ni2+ in the absence of urea. Receptors were tightly bound and not eluted before 100 mM imidazole or pH 3.6. Different results were obtained using IDA-Zn2+; at least four receptor isoforms were resolved on IDA-Zn2+. Receptor-metal interaction heterogeneity and affinity for IDA-Zn2+ and IDA-Cu2+, but not IDA-Ni2+, were substantially decreased in the presence of 3 M urea. The receptor isoforms identified and separated by IDA-Zn2+ chromatography were not separable using high-performance size-exclusion chromatography, density gradient centrifugation, chromatofocusing or DNA-affinity chromatography. The affinity of trypsin-generated (mero)receptor forms for each of the immobilized metals was decreased relative to that of intact receptor. High-affinity metal-binding sites were mapped to the DNA-binding domain, but at least one of the metal-binding sites is located on the steroid-binding domain. Recovery of all receptor forms from the immobilized metal ion columns was routinely above 90%. These results demonstrate the differential utility of various immobilized metals to characterize and separate individual receptor isoforms and domain structures. Receptor-metal interactions warrant further investigation to establish their effects on receptor structure/function relationships. In addition to the biological implications, recognition of estrogen receptor proteins as metal-binding proteins suggests new and potentially powerful receptor immobilization and purification regimes previously unexplored by those in this field.  相似文献   

17.
T F Holzman  T O Baldwin 《Biochemistry》1982,21(24):6194-6201
A covalently immobilized form of an inhibitor of bacterial luciferase, 2,2-diphenylpropylamine (D phi PA), was an effective affinity resin for purifying this enzyme from several distinct bacterial species. The inhibitor is competitive with the luciferase aldehyde substrate but enhances binding of the flavin substrate FMNH2 (reduced riboflavin 5'-phosphate); comparable binding interactions occur with luciferase, the immobilized inhibitor D phi PA-Sepharose, and the substrates [Holzman, T. F., & Baldwin, T. O. (1981) Biochemistry 20, 5524-5528]. The effect of FMNH2 on the binding of luciferase to D phi PA-Sepharose was mimicked by inorganic phosphate; the luciferase-phosphate complex had a greater affinity for D phi PA-Sepharose than did luciferase. This observation led to the development of a method using D phi PA-Sepharose to purify bacterial luciferase. When crude enzyme in a high-phosphate buffer was applied to a column of the affinity matrix, the luciferase activity was removed from solution. After the column was washed with the same buffer to remove unbound protein, the luciferase was eluted with a non-phosphate cationic buffer. The affinity column has proven useful for rapid purification of luciferase in much greater yield than has been previously possible with standard ion-exchange techniques. This approach has allowed one-step purification of luciferases from ammonium sulfate precipitates of Vibrio harveyi, Vibrio fischeri, and Photobacterium phosphoreum. The dissociation constants in 0.10 M phosphate for the affinity ligand: luciferase complexes were 0.49 micro M, 0.28 micro M, and 0.15 micro M, respectively, for the three species. The dissociation constant for the V. harveyi mutant AK-6, which has normal aldehyde binding but greatly reduced affinity for FMNH2, was 0.30 micro M, while that for the V. harveyi mutant AK-20, which has greatly reduced affinity for aldehyde but a slightly increased affinity for FMNH2, was 1.2 microM. Preliminary experiments indicated that the yellow fluorescence protein (YFP) that participates, through energy transfer, in bioluminescent emission in V. fischeri strain Y-1 could be separated from the luciferase in this strain by chromatography on the affinity matrix, whereas other methods of separating luciferase and YFP have had limited success because of the binding of YFP to luciferase.  相似文献   

18.
Metal chelate affinity chromatography using Zn2+-iminodiacetate agarose is shown to provide quantitative recoveries of Zn2+-inhibited protein Tyr(P) phosphatases. To elute adsorbed enzymes from immobilized Zn2+ three methods were compared: (1) removal of Zn2+ with chelators such as EDTA, (2) introduction of ligands to compete with enzyme for Zn2+ and (3) lowering pH to protonate sidechains in the enzyme that serve as ligands to Zn2+. Results show highest yields but poor purification for method 1, high purification but poor yields of active enzyme for method 3. It is concluded that gradients of competing Zn2+ ligands, such as imidazole, provide the best strategy for the purification of enzymes with retention of activity using metal chelate affinity chromatography.  相似文献   

19.
Inabilities to process particulate material and to allow the use of high flow rates are limitations of conventional chromatography. Membranes have been suggested as matrix for affinity separation due to advantages such as allowing high flow rates and low-pressure drops. This work evaluated the feasibility of using an iminodiacetic acid linked poly(ethylenevinyl alcohol) membrane in the immobilized metal ion affinity chromatography (IMAC) purification of a human proinsulin(His)(6) of an industrial insulin production process. The screening of metal ions showed Ni(2+) as metal with higher selectivity and capacity among the Cu(2+), Ni(2+), Zn(2+) and Co(2+). The membrane showed to be equivalent to conventional chelating beads in terms of selectivity and had a lower capacity (3.68 mg/g versus 12.26 mg/g). The dynamic adsorption capacity for human proinsulin(His)(6) was unaffected by the mode of operation (dead-end and cross-flow filtration).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号