首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   254篇
  免费   6篇
  国内免费   15篇
  2022年   1篇
  2021年   4篇
  2020年   5篇
  2019年   3篇
  2018年   9篇
  2017年   1篇
  2016年   4篇
  2015年   9篇
  2014年   21篇
  2013年   10篇
  2012年   8篇
  2011年   23篇
  2010年   14篇
  2009年   14篇
  2008年   14篇
  2007年   21篇
  2006年   11篇
  2005年   13篇
  2004年   9篇
  2003年   15篇
  2002年   6篇
  2001年   9篇
  2000年   8篇
  1999年   4篇
  1998年   7篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1987年   2篇
  1985年   1篇
  1984年   8篇
  1983年   1篇
  1982年   2篇
排序方式: 共有275条查询结果,搜索用时 375 毫秒
261.
钙在无花果细胞盐诱导脯氨酸积累中的作用   总被引:3,自引:0,他引:3  
接种于含NaCl 培养基的无花果愈伤组织细胞生长极显著受抑,Na+ 含量增加,K/Na 比值下降,游离脯氨酸积累。培养基中添加一定量CaCl2 不仅在一定程度上缓解盐分对生长的抑制作用,增加K+/Na + 比,而且明显促进游离脯氨酸积累。如果在添加钙的同时再添加细胞钙调素活性抑制剂盐酸氯丙嗪(CPZ) 或盐酸三氟拉嗪(TFP) ,均使钙促进的脯氨酸积累受到明显抑制,表明盐胁迫诱导的脯氨酸积累可能涉及细胞CaCaM系统。  相似文献   
262.
263.
Voltage-gated calcium channels (VGCCs), calmodulin (CaM), and calmodulin kinase II (CaMKII) are essential for various nervous system functions. CaM and CaMKII differentially regulate calcium dependent facilitation (CDF) and calcium dependent inactivation (CDI) of the Cav1 and Cav2 families of VGCCs. It is generally accepted that conserved structures in the C-terminus of these channels regulate CDF and CDI, and yet recent evidence indicates that other intracellular regions may be involved. We recently discovered that N-terminal sequences in Cav1.2 bind CaM and CaMKII, and function to regulate CDI as well as surface expression and open probability, respectively. Cav1 and Cav2 share significant portions of N-terminal sequence and therefore we explored whether homologous binding sites might exist in Cav2.1. Here, we show that like the proximal N-terminus of Cav1.2, the homologous region of Cav2.1 contains sequences which interact either directly or indirectly with CaM.  相似文献   
264.
265.
The cDNA of the touch-induced genes (TCH) of the sweet potato [Ipomoea batatas (L.) Lam.] has been cloned and analyzed. IbTCH1, which exists as at least two-copy genes in the genome of the sweet potato, encodes for 148-amino acid polypeptides, and harbors four conversed Ca2+-binding motif EF-hands. IbTCH1 was shown to be expressed in the flower, leaf, thick pigmented root, and particularly in the white fibrous root, but expressed only weakly in the petiole. IbTCH1 is upregulated upon exposure to environmental stresses, dehydration, and jasmonic acid. Furthermore, IbTCH1 is developmentally regulated in the leaf and root. These results strongly indicate that the gene performs functions in both plant development and in defense/stress-signaling pathways.  相似文献   
266.
Multifunctional Ca2+/calmodulin-dependent protein kinase type II (CaMK II) plays a crucial role in mediation of cellular responses to rising cytosolic Ca2+ levels. We find that the novel peptide substrate PGTIEKKRSNAMKKMKSIEQHR serves as a highly potent substrate for CaMK II enzymes purified from both Drosophila and rat. The peptide is derived from a photoreceptor-specific protein, phosrestin I, of the Drosophila compound eye and is designated as phosrestide-1. Using saturating substrate concentrations, the enzymes from both species transfer the γ-phosphoryl group of ATP to phosrestide-1 at a level three to ten times greater than to the commercially available mammalian-derived CaMK II substrates, autocamtide-3 and syntide-2. This indicates a conservation of substrate preferences for CaMK II derived from distantly related species, a dipteran fly and a mammal. Although phosrestide-1 contains two potential serine residues for CaMK II phosphorylation, we find that only the C-terminal serine is phosphorylated by rat CaMK II. However, removal of the upstream sequence containing the N-terminal serine substantially reduced the potency of phosrestide-1 as a CaMK II substrate to a level comparable to that of syntide-2 or autocamtide-3. We also find that a peptide representing the N-terminal segment of phosrestide-1 does not inhibit either CaMK II. Therefore, the enhanced potency of phosrestide-1 as a CaMK II substrate is likely to be due to a preferred conformation of the peptide induced by the N-terminal segment rather than to a specific binding of the enzymes to the N-terminus of the peptide. To the best of our knowledge, phosrestide-1 is the first CaMK II substrate which is designed based on an invertebrate sequence. The high phosphorylation level of phosrestide-1 by CaMK II of mammalian origin may reflect highly conserved CaMK II signaling cascades between vertebrates and invertebrates.  相似文献   
267.
A general method is presented for magnetic field alignment of proteins in solution. By tagging a target protein with calmodulin saturated with paramagnetic lanthanide ions it is possible to measure substantial residual dipolar couplings (RDC) whilst minimising the effects of pseudocontact shifts on the target protein. A construct was made consisting of a calmodulin-binding peptide (M13 from sk-MLCK) attached to a target protein, dihydrofolate reductase in this case. The engineered protein binds tightly to calmodulin saturated with terbium, a paramagnetic lanthanide ion. By using only a short linker region between the M13 and the target protein, some of the magnetic field alignment induced in the CaM(Tb3 +)4 is effectively transmitted to the target protein (DHFR). 1H-15N HSQC IPAP experiments on the tagged complex containing 15N-labelled DHFR-M13 protein and unlabelled CaM(Tb3 +)4 allow one to measure RDC contributions in the aligned complex. RDC values in the range +4.0 to –7.4 Hz were measured at 600 MHz. Comparisons of 1H-15N HSQC spectra of 15N-DHFR-M13 alone and its complexes with CaM(Ca2 +)4 and CaM(Tb3+)4 indicated that (i) the structure of the target protein is not affected by the complex formation and (ii) the spectra of the target protein are not seriously perturbed by pseudocontact shifts. The use of a relatively large tagging group (CaM) allows us to use a lanthanide ion with a very high magnetic susceptibility anisotropy (such as Tb3+) to give large alignments while maintaining relatively long distances from the target protein nuclei (and hence giving only small pseudocontact shift contributions).  相似文献   
268.
八肽胆囊收缩素拮抗NDAP对大鼠脊髓钙调蛋白的作用   总被引:1,自引:0,他引:1  
陈素珍  韩济生 《生理学报》1994,46(2):120-125
为探讨CCK-8抗阿片作用的受体后分子机理,本实验观察了CCK-8和κ受体激动剂NDAP对大鼠脊髓背柱突触小体钙调蛋白活性的影响。结果表明:(1)10nmol/L-1μmol/LNDAP显著低大鼠髓背侧部突触小体的CaM 活性(P均<0.0保ǎ亮吭黾樱种谱饔貌欢霞忧浚庵肿饔每杀惶匾煨驭适芴遄瓒霞粒危铮颍拢危桑ǎ宝蹋恚铮欤蹋┩耆瓒稀#ǎ玻茫茫耍冈诘团ǘ仁保ǎ保埃保埃埃睿恚铮欤蹋  相似文献   
269.
in vitro using these myosins and of localization studies using antiserum raised against each heavy chain, we suggested that both myosins are molecular motors for generating the motive force for cytoplasmic streaming in higher plant cells. The 170-kDa myosin is expressed not only in somatic cells but also in germinating pollen. In contrast, the 175-kDa myosin is distributed only in somatic cells. In the tip region of growing pollen tubes, it has been demonstrated that a tip-focused Ca2+ gradient is indispensable for growth and tube orientation. Cytoplasmic streaming in this region has been shown to be inactivated by high concentrations of Ca2+. The motile activity in vitro of 170-kDa myosin is suppressed by low (μM) levels of Ca2+ through its CaM light chain, suggesting that this suppression is one of the mechanisms for inactivating cytoplasmic streaming near the tip region of pollen tubes. The motile activity in vitro of 175-kDa myosin is also inhibited by Ca2+ at concentrations higher than 10−6M. It has been revealed that the elevation of cytosolic Ca2+ concentrations causes the cessation of cytoplasmic streaming even in somatic cells. Therefore, Ca2+-sensitivity of the motile activity of myosin appears to be a general molecular basis for Ca2+-induced cessation of cytoplasmic streaming. Received 6 September 2000/ Accepted in revised form 7 October 2000  相似文献   
270.
Calmodulin (CaM) is one of the major Ca2+-binding proteins in the cells, and it plays multiple roles in several Ca2+ signaling pathways and regulating the activities of other proteins. In the present study, we characterized CaM genes from the marine dinoflagellates Amphidinium carterae, Cochlodinium polykrikoides, Prorocentrum micans, and P. minimum, and examined their expression patterns upon the addition and chelation of calcium. Their cDNAs had same ORF length (450 bp) and encoded the same protein, but with few nucleotide differences in the ORF and different 3′- and 5′ untranslated regions (UTRs). The four CaM proteins consist of four EF-hand Ca2+-binding motifs, two N-terminal domains and two C-terminal domains, and they were highly conserved within eukaryotes. The CaM gene expressions in the tested species increased by calcium treatments; however, they were significantly down-regulated by the calcium-chelator EGTA. The CaM genes of the test species were inducible and regulated by different calcium doses, suggesting their major role in calcium regulation in dinoflagellates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号