首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   253篇
  免费   6篇
  国内免费   15篇
  2022年   1篇
  2021年   3篇
  2020年   5篇
  2019年   3篇
  2018年   9篇
  2017年   1篇
  2016年   4篇
  2015年   9篇
  2014年   21篇
  2013年   10篇
  2012年   8篇
  2011年   23篇
  2010年   14篇
  2009年   14篇
  2008年   14篇
  2007年   21篇
  2006年   11篇
  2005年   13篇
  2004年   9篇
  2003年   15篇
  2002年   6篇
  2001年   9篇
  2000年   8篇
  1999年   4篇
  1998年   7篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1987年   2篇
  1985年   1篇
  1984年   8篇
  1983年   1篇
  1982年   2篇
排序方式: 共有274条查询结果,搜索用时 15 毫秒
271.
T Shimizu  M Hatano  Y Muto  Y Nozawa 《FEBS letters》1984,166(2):373-377
We have used 19F NMR to study interactions of trifluoperazine (TFP), a potent calmodulin (CaM) antagonist, with Tetrahymena calmodulin (Tet. CaM). Changes in chemical shift and bandwidth of TFP caused by adding Tet. CaM in the presence of excess Ca2+ were much smaller than those by adding porcine CaM. The spectral features of the TFP-Tet. CaM solution in the presence of excess Ca2+ were quite similar to those of the TFP-porcine CaM solution in the absence of Ca2+. The exchange rate of TFP from Tet. CaM was estimated to be nearly 20 s-1. The TFP-Tet. CaM solution in the absence of Ca2+ showed a pronounced pH dependence of the 19F NMR chemical shift, whereas the solution in the presence of excess Ca2+ showed a smaller pH dependence. Thus, it was suggested that TFP is located near a hydrophilic region of the Tet. CaM molecule in the absence of Ca2+, while TFP is located near a hydrophobic region of the Tet. CaM in the presence of excess Ca2+.  相似文献   
272.
Entamoeba histolytica (E. histolytica) is an etiological agent of human amoebic colitis, and it causes a high level of morbidity and mortality worldwide, particularly in developing countries. Ca2+ plays a pivotal role in amoebic pathogenesis, and Ca2+-binding proteins (CaBPs) of E. histolytica appear to be a major determinant in this process. E. histolytica has 27-EF-hand containing CaBPs, suggesting that this organism has complex Ca2+ signaling cascade. E. histolytica CaBPs share (29–47%) sequence identity with ubiquitous Ca2+-binding protein calmodulin (CaM); however, they do not show any significant structural similarity, indicating lack of a typical CaM in this organism. Structurally, these CaBPs are very diverse among themselves, and perhaps such diversity allows them to recognize different cellular targets, thereby enabling them to perform a range of cellular functions. The presence of such varied signaling molecules helps parasites to invade host cells and advance in disease progression. In the past two decades, tremendous progress has been made in understanding the structure of E. histolytica CaBPs by using the X-ray or NMR method. To gain greater insight into the structural and functional diversity of these amoebic CaBPs, we analyzed and compiled all the available literature. Most of the CaBPs has about 150 amino acids with 4-EF hand or EF-hand-like sequences, similar to CaM. In a few cases, all the EF-hand motifs are not capable of binding Ca2+, suggesting them to be pseudo EF-hand motifs. The CaBPs perform diverse cellular signaling that includes cytoskeleton remodeling, phagocytosis, cell proliferation, migration of trophozoites, and GTPase activity. Overall, the structural and functional diversity of E. histolytica CaBPs compiled here may offer a basis to develop an efficient drug to counter its pathogenesis.  相似文献   
273.
Recent experimental evidence indicates that some steroid hormones, apart from their well-documented genomic actions, could produce non-genomic rapid effects, and are potent modulators of the plasma membrane proteins, including voltage- and ligand-operated ion channels or G protein-coupled receptors. Neuroactive steroids, 17β-estradiol, testosterone, pregnenolone sulfate and dehydroepiandrosterone sulfate, after a short-time incubation directly modulated the activity of plasma membrane Ca2+-ATPase purified from synaptosomal membranes of rat cortex. The sulfate derivatives of dehydroepiandrosterone and pregnenolone applied at concentrations of 10?11–10?6 M, showed an inverted U-shape potency in the regulation of Ca2+-ATPase activity. At physiologically relevant concentrations (10?8–10?9 M) a maximal enhancement of the basal activity reached 200%. Testosterone (10?11–10?6 M) and 17β-estradiol (10?12–10?9 M) caused a dose-dependent increase in the hydrolytic ability of Ca2+-ATPase, and the activity with the highest concentration of steroids reached 470% and 200%, respectively. All examined steroids decreased the stimulatory effect of a naturally existing activator of the calcium pump, calmodulin. The present study strongly suggests that the plasma membrane calcium pump could be one of the possible membrane targets for a non-genomic neuroactive steroid action.  相似文献   
274.
Previous investigations from our laboratory have demonstrated a significant reduction in the catalytic function of the 60 kDa and 63 kDa isozymes of calmodulin-dependent cyclic nucleotide phosphodiesterase (CaMPDE) when comparing human cerebral tissue that was free of tumor and glioblastoma multiforme (GBM) and gliosarcoma [Lal S., Raju R.V.S., Macaulay R.B.J., and Sharma R.K. (1996) Can. J. Neurol. Sci., 23, 245–250], The results suggested the possibility of an endogenously produced inhibitor of CaMPDE expressed in these tumors. Further investigation has initially characterized the presence of a heat-labile, protein inhibitor of both the 60 kDa and 63 kDa isozymes of CaMPDE. Sephacryl S-200 gel filtration column chromatography indicated that the inhibitor has an apparent molecular weight of 22 kDa and experimental evidence demonstrates that this inhibitor protein may act independently of calmodulin, and is therefore a novel CaMPDE inhibitor. Previous work on non-CNS tumors has shown high levels of CaMPDE activity and absence of an inhibitor. This suggests that a different mechanism may exist for the proliferation of these subsets of tumors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号